Cargando…

Effect of Alkyl Chain Length in POSS Nanocage on Non-Isothermal Crystallization Behavior of PCL/Amino-POSS Nanocomposites

The study of the non-isothermal crystallization behavior of polymers is of great importance due to the effect of degree of crystallinity and crystallization process on the polymer properties. The effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane (APIBPOSS) and aminopropylisooctyl po...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández, M. Dolores, Guzmán, Dailyn J., Ramos, Johnny R., Fernández, M. Jesús
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835647/
https://www.ncbi.nlm.nih.gov/pubmed/31635134
http://dx.doi.org/10.3390/polym11101719
Descripción
Sumario:The study of the non-isothermal crystallization behavior of polymers is of great importance due to the effect of degree of crystallinity and crystallization process on the polymer properties. The effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane (APIBPOSS) and aminopropylisooctyl polyhedral oligomeric silsesquioxane (APIOPOSS) on poly(ε-caprolactone) (PCL) crystallization is studied by differential scanning calorimetry (DSC) under non-isothermal conditions and polarized optical microscopy (POM). The crystallization kinetics is analyzed using the Avrami and Mo models, and effective activation energies are evaluated by the Friedman isoconversional method. The results show that the compatibility between polyhedral oligomeric silsesquioxanes (POSS) and PCL and POSS loading affect the crystallization process. A higher crystallization temperature, a narrower size distribution of crystallite, and a faster crystallization rate are obtained in the presence of all the studied contents of APIBPOSS and at lower contents of APIOPOSS. At APIOPOSS contents higher than 2 wt %, the crystallization temperature is lowered, the size distribution of crystallite is broadened, and the crystallization process is retarded. The presence of POSS leads to an increase in the number of nucleation sites, and a reduction in the size of the crystallite and the overall degree of crystallinity, as a result of the confinement of PCL chains caused by POSS nanoparticles.