Cargando…

Investigation into the Direct Photolysis Process of Photo-Induced RAFT Polymerization by ESR Spin Trapping

The direct photolysis of reversible addition fragmentation chain transfer (RAFT) agents under visible light was demonstrated by electron spin resonance (ESR) using 5,5-dimethyl-1-pyrroline N-oxide as a typical spin trap. The hyperfine coupling lines obtained by ESR spectroscopy showed the successful...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiajia, Zhang, Mengmeng, Zhu, Jian, Zhu, Xiulin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835659/
https://www.ncbi.nlm.nih.gov/pubmed/31640166
http://dx.doi.org/10.3390/polym11101722
Descripción
Sumario:The direct photolysis of reversible addition fragmentation chain transfer (RAFT) agents under visible light was demonstrated by electron spin resonance (ESR) using 5,5-dimethyl-1-pyrroline N-oxide as a typical spin trap. The hyperfine coupling lines obtained by ESR spectroscopy showed the successful capture of the carbon-centered and the sulfur-centered radical. Photo-polymerization of vinyl acetate under different wavelengths was performed to verify the effects of wavelength on the process. The effect of the R group of RAFT agents on the photolysis was investigated by spin-trapping experiments using poly (butyl acrylate) and poly (vinyl acetate) as macroRAFT agents. The quantitative experiment showed the yield of photolysis of a xanthate to be only 0.023% under λ > 440 nm.