Cargando…

Selective Localization of Carbon Black in Bio-Based Poly (Lactic Acid)/Recycled High-Density Polyethylene Co-Continuous Blends to Design Electrical Conductive Composites with a Low Percolation Threshold

The electrically conductive poly (lactic acid) (PLA)/recycled high-density polyethylene (HDPE)/carbon black (CB) composites with a fine co-continuous micro structure and selective localization of CB in the HDPE component were fabricated by one-step melt processing via a twin-screw extruder. Micromor...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xiang, Kang, Benhao, Shi, Shengyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835822/
https://www.ncbi.nlm.nih.gov/pubmed/31569802
http://dx.doi.org/10.3390/polym11101583
Descripción
Sumario:The electrically conductive poly (lactic acid) (PLA)/recycled high-density polyethylene (HDPE)/carbon black (CB) composites with a fine co-continuous micro structure and selective localization of CB in the HDPE component were fabricated by one-step melt processing via a twin-screw extruder. Micromorphology analysis, electrical conductivity, thermal properties, thermal stability, and mechanical properties were investigated. Scanning electron microscope (SEM) images indicate that a co-continuous morphology is formed, and CB is selectively distributed in the HDPE component. With the introduction of CB, the phase size of the PLA component and the HDPE component in PLA/HDPE blends is reduced. In addition, differential scanning calorimetry (DSC) and thermos gravimetric analysis (TGA) results show that the introduction of CB promotes the crystallization behavior of the PLA and HDPE components, respectively, and improves the thermal stability of PLA70/30HDPE/CB composites. The electrically conductive percolation threshold of the PLA70/30HDPE/CB composites is around 5.0 wt %, and the electrical conductivity of PLA70/30HDPE/CB composites reaches 1.0 s/cm and 15 s/cm just at the 10 wt % and 15 wt % CB loading, respectively. Further, the tensile and impact tests show that the PLA70/30HDPE/CB composites have good mechanical properties. The excellent electrical conductivity and good mechanical properties offer the potential to broaden the application of PLA/HDPE/CB composites.