Cargando…
Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media
Application of Na(+)-responsive DNA quadruplex hydrogels, which utilize G-quadruplexes as crosslinking points of poly(ethylene glycol) (PEG) network as cell culture substrate, has been examined. PEG-oligodeoxynucleotide (ODN) conjugate, in which four deoxyguanosine (dG4) residues are tethered to bot...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835832/ https://www.ncbi.nlm.nih.gov/pubmed/31581736 http://dx.doi.org/10.3390/polym11101607 |
Sumario: | Application of Na(+)-responsive DNA quadruplex hydrogels, which utilize G-quadruplexes as crosslinking points of poly(ethylene glycol) (PEG) network as cell culture substrate, has been examined. PEG-oligodeoxynucleotide (ODN) conjugate, in which four deoxyguanosine (dG4) residues are tethered to both ends of PEG, was prepared by modified high-efficiency liquid phase (HELP) synthesis of oligonucleotides and used as the macromonomer. When mixed with equal volume of cell culture media, the solution of PEG-ODN turned into stiff hydrogel (G-quadruplex hydrogel) as the result of G-quadruplex formation by the dG4 segments in the presence of Na(+). PEG-ODN itself did not show cytotoxicity and the resulting hydrogel was stable enough under cell culture conditions. However, L929 fibroblast cells cultured in G-quadruplex hydrogel remained spherical for a week, yet alive, without proliferation. The cells gradually sedimented through the gel day by day, probably due to the reversible nature of G-quadruplex formation and the resulting slow rearrangement of the macromonomers. Once they reached the bottom glass surface, the cells started to spread and proliferate. |
---|