Cargando…
Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches
Metabolomics studies of the early-life exposome often use maternal urine specimens to investigate critical developmental windows, including the periconceptional period and early pregnancy. During these windows changes in kidney function can impact urine concentration. This makes accounting for diffe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835889/ https://www.ncbi.nlm.nih.gov/pubmed/31546636 http://dx.doi.org/10.3390/metabo9100198 |
_version_ | 1783466779671003136 |
---|---|
author | Rosen Vollmar, Ana K. Rattray, Nicholas J. W. Cai, Yuping Santos-Neto, Álvaro J. Deziel, Nicole C. Jukic, Anne Marie Z. Johnson, Caroline H. |
author_facet | Rosen Vollmar, Ana K. Rattray, Nicholas J. W. Cai, Yuping Santos-Neto, Álvaro J. Deziel, Nicole C. Jukic, Anne Marie Z. Johnson, Caroline H. |
author_sort | Rosen Vollmar, Ana K. |
collection | PubMed |
description | Metabolomics studies of the early-life exposome often use maternal urine specimens to investigate critical developmental windows, including the periconceptional period and early pregnancy. During these windows changes in kidney function can impact urine concentration. This makes accounting for differential urinary dilution across samples challenging. Because there is no consensus on the ideal normalization approach for urinary metabolomics data, this study’s objective was to determine the optimal post-analytical normalization approach for untargeted metabolomics analysis from a periconceptional cohort of 45 women. Urine samples consisted of 90 paired pre- and post-implantation samples. After untargeted mass spectrometry-based metabolomics analysis, we systematically compared the performance of three common approaches to adjust for urinary dilution—creatinine adjustment, specific gravity adjustment, and probabilistic quotient normalization (PQN)—using unsupervised principal components analysis, relative standard deviation (RSD) of pooled quality control samples, and orthogonal partial least-squares discriminant analysis (OPLS-DA). Results showed that creatinine adjustment is not a reliable approach to normalize urinary periconceptional metabolomics data. Either specific gravity or PQN are more reliable methods to adjust for urinary concentration, with tighter quality control sample clustering, lower RSD, and better OPLS-DA performance compared to creatinine adjustment. These findings have implications for metabolomics analyses on urine samples taken around the time of conception and in contexts where kidney function may be altered. |
format | Online Article Text |
id | pubmed-6835889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68358892019-11-25 Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches Rosen Vollmar, Ana K. Rattray, Nicholas J. W. Cai, Yuping Santos-Neto, Álvaro J. Deziel, Nicole C. Jukic, Anne Marie Z. Johnson, Caroline H. Metabolites Article Metabolomics studies of the early-life exposome often use maternal urine specimens to investigate critical developmental windows, including the periconceptional period and early pregnancy. During these windows changes in kidney function can impact urine concentration. This makes accounting for differential urinary dilution across samples challenging. Because there is no consensus on the ideal normalization approach for urinary metabolomics data, this study’s objective was to determine the optimal post-analytical normalization approach for untargeted metabolomics analysis from a periconceptional cohort of 45 women. Urine samples consisted of 90 paired pre- and post-implantation samples. After untargeted mass spectrometry-based metabolomics analysis, we systematically compared the performance of three common approaches to adjust for urinary dilution—creatinine adjustment, specific gravity adjustment, and probabilistic quotient normalization (PQN)—using unsupervised principal components analysis, relative standard deviation (RSD) of pooled quality control samples, and orthogonal partial least-squares discriminant analysis (OPLS-DA). Results showed that creatinine adjustment is not a reliable approach to normalize urinary periconceptional metabolomics data. Either specific gravity or PQN are more reliable methods to adjust for urinary concentration, with tighter quality control sample clustering, lower RSD, and better OPLS-DA performance compared to creatinine adjustment. These findings have implications for metabolomics analyses on urine samples taken around the time of conception and in contexts where kidney function may be altered. MDPI 2019-09-21 /pmc/articles/PMC6835889/ /pubmed/31546636 http://dx.doi.org/10.3390/metabo9100198 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rosen Vollmar, Ana K. Rattray, Nicholas J. W. Cai, Yuping Santos-Neto, Álvaro J. Deziel, Nicole C. Jukic, Anne Marie Z. Johnson, Caroline H. Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches |
title | Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches |
title_full | Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches |
title_fullStr | Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches |
title_full_unstemmed | Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches |
title_short | Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches |
title_sort | normalizing untargeted periconceptional urinary metabolomics data: a comparison of approaches |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835889/ https://www.ncbi.nlm.nih.gov/pubmed/31546636 http://dx.doi.org/10.3390/metabo9100198 |
work_keys_str_mv | AT rosenvollmaranak normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches AT rattraynicholasjw normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches AT caiyuping normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches AT santosnetoalvaroj normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches AT dezielnicolec normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches AT jukicannemariez normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches AT johnsoncarolineh normalizinguntargetedpericonceptionalurinarymetabolomicsdataacomparisonofapproaches |