Cargando…
Prediction of Pasting Properties of Dough from Mixolab Measurements Using Artificial Neuronal Networks
An artificial neuronal network (ANN) system was conducted to predict the Mixolab parameters which described the wheat flour starch-amylase part (torques C3, C4, C5, and the difference between C3-C4and C5-C4, respectively) from physicochemical properties (wet gluten, gluten deformation index, Falling...
Autores principales: | Codină, Georgiana Gabriela, Dabija, Adriana, Oroian, Mircea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835905/ https://www.ncbi.nlm.nih.gov/pubmed/31581568 http://dx.doi.org/10.3390/foods8100447 |
Ejemplares similares
-
Rheological Properties of Wheat–Flaxseed Composite Flours Assessed by Mixolab and Their Relation to Quality Features
por: Codină, Georgiana Gabriela, et al.
Publicado: (2019) -
Pasting, thermo, and Mixolab thermomechanical properties of potato starch–wheat gluten composite systems
por: Xu, Fen, et al.
Publicado: (2020) -
Dough Rheological Behavior and Microstructure Characterization of Composite Dough with Wheat and Tomato Seed Flours
por: Mironeasa, Silvia, et al.
Publicado: (2019) -
Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour
por: Atudorei, Denisa, et al.
Publicado: (2021) -
The Effect of Sodium Reduction by Sea Salt and Dry Sourdough Addition on the Wheat Flour Dough Rheological Properties
por: Voinea, Andreea, et al.
Publicado: (2020)