Cargando…

Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion

For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challeng...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Tae Hwan, Lee, Da Yeon, Ketebo, Abdurazak Aman, Lee, Seungah, Manavalan, Balachandran, Basith, Shaherin, Ahn, Chanyoung, Kang, Seong Ho, Park, Sungsu, Lee, Gwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835988/
https://www.ncbi.nlm.nih.gov/pubmed/31627375
http://dx.doi.org/10.3390/nano9101475
Descripción
Sumario:For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO(2)(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO(2)(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 µg/µL MNPs@SiO(2)(RITC). Membrane fluidity was reduced by MNPs@SiO(2)(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and ~30% decreased total traction force were observed in cells treated with 1.0 µg/µL MNPs@SiO(2)(RITC) without specific interaction between MNPs@SiO(2)(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO(2)(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO(2)(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.