Cargando…

Ion Mobility Spectrometry as a Potential Tool for Flavor Control in Chocolate Manufacture

Chocolate has a complex flavor profile composed of more than 600 volatile compounds that mainly arise from the thermo-mechanical treatment during roasting and conching. The aim of this study was to evaluate the applicability of ion mobility spectrometry (IMS), as a real-time method for process monit...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Carolin, Jaros, Doris, Rohm, Harald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836128/
https://www.ncbi.nlm.nih.gov/pubmed/31600893
http://dx.doi.org/10.3390/foods8100460
Descripción
Sumario:Chocolate has a complex flavor profile composed of more than 600 volatile compounds that mainly arise from the thermo-mechanical treatment during roasting and conching. The aim of this study was to evaluate the applicability of ion mobility spectrometry (IMS), as a real-time method for process monitoring in chocolate manufacture. It is evident from the ion mobility (IM) fingerprint spectra that individual processing steps affect the signal intensities at particular drift time regions. The analysis of individual IM spectra by principal component analysis (PCA) revealed that it is possible to distinguish with respect to conching temperature and time. PCA also allowed identifying those parts of the IM spectra that were predominantly affected by the respective treatment. It was, on the basis of the IM flavor fingerprints and subsequent PCA, possible to distinguish between the different states of processing of bulk cocoa. The results of the study imply that, using appropriate post-data treatment, IMS could be used for process control in cocoa processing.