Cargando…

Properties and Characterization of a PLA–Chitin–Starch Biodegradable Polymer Composite

This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA–chitin, PLA–starch and PLA–chitin–starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch...

Descripción completa

Detalles Bibliográficos
Autores principales: Olaiya, N. G., Surya, Indra, Oke, P. K., Rizal, Samsul, Sadiku, E. R., Ray, S. S., Farayibi, P. K., Hossain, Md Sohrab, Abdul Khalil, H. P. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836172/
https://www.ncbi.nlm.nih.gov/pubmed/31614623
http://dx.doi.org/10.3390/polym11101656
Descripción
Sumario:This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA–chitin, PLA–starch and PLA–chitin–starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young’s modulus, and impact showed that the PLA–chitin–starch blend has the best mechanical properties compared to PLA–chitin and PLA–starch blends. The dynamic mechanical analysis result shows a better damping property for PLA–chitin than PLA–chitin–starch and PLA–starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA–chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA–chitin–starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA–chitin and PLA–starch samples.