Cargando…
Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates
This paper presents an investigation into the effect of graphene nanoplatelets (GNPs) as a means of improving the impact buckling performance and delamination propagation resistance of a recently developed 3D fiber-metal laminate (3D-FML). One of the highlights of the investigation is the examinatio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836262/ https://www.ncbi.nlm.nih.gov/pubmed/31635259 http://dx.doi.org/10.3390/nano9101482 |
_version_ | 1783466867590955008 |
---|---|
author | De Cicco, Davide Taheri, Farid |
author_facet | De Cicco, Davide Taheri, Farid |
author_sort | De Cicco, Davide |
collection | PubMed |
description | This paper presents an investigation into the effect of graphene nanoplatelets (GNPs) as a means of improving the impact buckling performance and delamination propagation resistance of a recently developed 3D fiber-metal laminate (3D-FML). One of the highlights of the investigation is the examination of the performance of the GNP-reinforced resin at a sub-freezing temperature (−50 °C). 3D-FML beam specimens were subjected to axial impact of various intensities at room-temperature, while they were subjected to quasi-static axial compression load at the sub-freezing temperature. Moreover, the influence of two different surface preparation methods on the performance of the metallic/FRP interfaces of the hybrid system was also investigated in this study. Although the inclusion of the GNPs in the resin resulted in some gain in the buckling capacity of the 3D-FML, nevertheless, the results revealed that the lack of adequate chemical bond between the GNP-reinforced resin and the magnesium skins of the hybrid material system significantly limited the potential influence of the GNPs. Therefore, a cost-effective and practical alternative is presented that results in a significant improvement in the interfacial capacity. |
format | Online Article Text |
id | pubmed-6836262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68362622019-11-21 Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates De Cicco, Davide Taheri, Farid Nanomaterials (Basel) Article This paper presents an investigation into the effect of graphene nanoplatelets (GNPs) as a means of improving the impact buckling performance and delamination propagation resistance of a recently developed 3D fiber-metal laminate (3D-FML). One of the highlights of the investigation is the examination of the performance of the GNP-reinforced resin at a sub-freezing temperature (−50 °C). 3D-FML beam specimens were subjected to axial impact of various intensities at room-temperature, while they were subjected to quasi-static axial compression load at the sub-freezing temperature. Moreover, the influence of two different surface preparation methods on the performance of the metallic/FRP interfaces of the hybrid system was also investigated in this study. Although the inclusion of the GNPs in the resin resulted in some gain in the buckling capacity of the 3D-FML, nevertheless, the results revealed that the lack of adequate chemical bond between the GNP-reinforced resin and the magnesium skins of the hybrid material system significantly limited the potential influence of the GNPs. Therefore, a cost-effective and practical alternative is presented that results in a significant improvement in the interfacial capacity. MDPI 2019-10-18 /pmc/articles/PMC6836262/ /pubmed/31635259 http://dx.doi.org/10.3390/nano9101482 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article De Cicco, Davide Taheri, Farid Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates |
title | Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates |
title_full | Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates |
title_fullStr | Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates |
title_full_unstemmed | Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates |
title_short | Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates |
title_sort | effect of functionalized graphene nanoplatelets on the delamination-buckling and delamination propagation resistance of 3d fiber-metal laminates under different loading rates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836262/ https://www.ncbi.nlm.nih.gov/pubmed/31635259 http://dx.doi.org/10.3390/nano9101482 |
work_keys_str_mv | AT deciccodavide effectoffunctionalizedgraphenenanoplateletsonthedelaminationbucklinganddelaminationpropagationresistanceof3dfibermetallaminatesunderdifferentloadingrates AT taherifarid effectoffunctionalizedgraphenenanoplateletsonthedelaminationbucklinganddelaminationpropagationresistanceof3dfibermetallaminatesunderdifferentloadingrates |