Cargando…

Hydroxytyrosol Modulates Adipocyte Gene and miRNA Expression Under Inflammatory Condition

Chronic inflammation of the adipose tissue (AT) is a major contributor to obesity-associated cardiometabolic complications. The olive oil polyphenol hydroxytyrosol (HT) contributes to Mediterranean diet cardiometabolic benefits through mechanisms still partially unknown. We investigated HT (1 and 10...

Descripción completa

Detalles Bibliográficos
Autores principales: Scoditti, Egeria, Carpi, Sara, Massaro, Marika, Pellegrino, Mariangela, Polini, Beatrice, Carluccio, Maria Annunziata, Wabitsch, Martin, Verri, Tiziano, Nieri, Paola, De Caterina, Raffaele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836288/
https://www.ncbi.nlm.nih.gov/pubmed/31627295
http://dx.doi.org/10.3390/nu11102493
Descripción
Sumario:Chronic inflammation of the adipose tissue (AT) is a major contributor to obesity-associated cardiometabolic complications. The olive oil polyphenol hydroxytyrosol (HT) contributes to Mediterranean diet cardiometabolic benefits through mechanisms still partially unknown. We investigated HT (1 and 10 μmol/L) effects on gene expression (mRNA and microRNA) related to inflammation induced by 10 ng/mL tumor necrosis factor (TNF)-α in human Simpson–Golabi–Behmel Syndrome (SGBS) adipocytes. At real-time PCR, HT significantly inhibited TNF-α-induced mRNA levels, of monocyte chemoattractant protein-1, C-X-C Motif Ligand-10, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, plasminogen activator inhibitor-1, cyclooxygenase-2, macrophage colony-stimulating factor, matrix metalloproteinase-2, Cu/Zn superoxide dismutase-1, and glutathione peroxidase, as well as surface expression of intercellular adhesion molecule-1, and reverted the TNF-α-mediated inhibition of endothelial nitric oxide synthase, peroxisome proliferator-activated receptor coactivator-1α, and glucose transporter-4. We found similar effects in adipocytes stimulated by macrophage-conditioned media. Accordingly, HT significantly counteracted miR-155-5p, miR-34a-5p, and let-7c-5p expression in both cells and exosomes, and prevented NF-κB activation and production of reactive oxygen species. HT can therefore modulate adipocyte gene expression profile through mechanisms involving a reduction of oxidative stress and NF-κB inhibition. By such mechanisms, HT may blunt macrophage recruitment and improve AT inflammation, preventing the deregulation of pathways involved in obesity-related diseases.