Cargando…

The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm

We investigated three areas of uncertainty about the role of vision in basketball shooting, the timing of fixations (early, late), the location of fixations (hoop centre, non-centre) and the effect of the defender on performance. We also sought to overcome a limitation of past quiet eye studies that...

Descripción completa

Detalles Bibliográficos
Autores principales: Vickers, Joan N., Causer, Joe, Vanhooren, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836760/
https://www.ncbi.nlm.nih.gov/pubmed/31736825
http://dx.doi.org/10.3389/fpsyg.2019.02424
_version_ 1783466966638395392
author Vickers, Joan N.
Causer, Joe
Vanhooren, Dan
author_facet Vickers, Joan N.
Causer, Joe
Vanhooren, Dan
author_sort Vickers, Joan N.
collection PubMed
description We investigated three areas of uncertainty about the role of vision in basketball shooting, the timing of fixations (early, late), the location of fixations (hoop centre, non-centre) and the effect of the defender on performance. We also sought to overcome a limitation of past quiet eye studies that reported only one quiet eye (QE) period prior to a phase of the action. Elite basketball players received the pass and took three-point shots in undefended and defended conditions. Five sequential QE periods were analyzed that were initiated prior to each phase of the shooting action: QE catch, QE arm preparation, QE arm flexion, QE arm extension, and QE ball release. We used a novel design in which the number of hits and misses were held constant by condition, thus leaving the timing and location of QE fixations free to vary across the phases during an equal number of successful and unsuccessful trials. The number of QE fixations accounted for 87% of total fixations. The greatest percent occurred during QE catch (43.6%), followed by QE arm flexion (34.1%), QE arm extension (17.5%) and QE ball release (4.8%). No fixations were found prior to QE arm preparation, due to a saccade made immediately to the target after QE catch. Fixation frequency averaged 2.20 per trial, and 1.25 during the final shooting action, meaning that most participants had time for only one fixation as the shot was taken. Accuracy was enhanced when: (1) an early QE offset occurred prior to the catch, (2) an early saccade was made to the target, (3) a longer QE duration occurred during arm flexion, and (4) QE arm flexion was located on the centre of the hoop, rather than on non-centre locations. Overall, the results provide evidence that vision of the hoop was severely limited during the last phase of the shooting action (QE ball release). The significance of the results is explored in the discussion, along with a QE training program designed to improve three-point shooting. Overall, the results greatly expand the role of the QE in explaining optimal motor performance.
format Online
Article
Text
id pubmed-6836760
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-68367602019-11-15 The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm Vickers, Joan N. Causer, Joe Vanhooren, Dan Front Psychol Psychology We investigated three areas of uncertainty about the role of vision in basketball shooting, the timing of fixations (early, late), the location of fixations (hoop centre, non-centre) and the effect of the defender on performance. We also sought to overcome a limitation of past quiet eye studies that reported only one quiet eye (QE) period prior to a phase of the action. Elite basketball players received the pass and took three-point shots in undefended and defended conditions. Five sequential QE periods were analyzed that were initiated prior to each phase of the shooting action: QE catch, QE arm preparation, QE arm flexion, QE arm extension, and QE ball release. We used a novel design in which the number of hits and misses were held constant by condition, thus leaving the timing and location of QE fixations free to vary across the phases during an equal number of successful and unsuccessful trials. The number of QE fixations accounted for 87% of total fixations. The greatest percent occurred during QE catch (43.6%), followed by QE arm flexion (34.1%), QE arm extension (17.5%) and QE ball release (4.8%). No fixations were found prior to QE arm preparation, due to a saccade made immediately to the target after QE catch. Fixation frequency averaged 2.20 per trial, and 1.25 during the final shooting action, meaning that most participants had time for only one fixation as the shot was taken. Accuracy was enhanced when: (1) an early QE offset occurred prior to the catch, (2) an early saccade was made to the target, (3) a longer QE duration occurred during arm flexion, and (4) QE arm flexion was located on the centre of the hoop, rather than on non-centre locations. Overall, the results provide evidence that vision of the hoop was severely limited during the last phase of the shooting action (QE ball release). The significance of the results is explored in the discussion, along with a QE training program designed to improve three-point shooting. Overall, the results greatly expand the role of the QE in explaining optimal motor performance. Frontiers Media S.A. 2019-10-30 /pmc/articles/PMC6836760/ /pubmed/31736825 http://dx.doi.org/10.3389/fpsyg.2019.02424 Text en Copyright © 2019 Vickers, Causer and Vanhooren. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychology
Vickers, Joan N.
Causer, Joe
Vanhooren, Dan
The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm
title The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm
title_full The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm
title_fullStr The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm
title_full_unstemmed The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm
title_short The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm
title_sort role of quiet eye timing and location in the basketball three-point shot: a new research paradigm
topic Psychology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836760/
https://www.ncbi.nlm.nih.gov/pubmed/31736825
http://dx.doi.org/10.3389/fpsyg.2019.02424
work_keys_str_mv AT vickersjoann theroleofquieteyetimingandlocationinthebasketballthreepointshotanewresearchparadigm
AT causerjoe theroleofquieteyetimingandlocationinthebasketballthreepointshotanewresearchparadigm
AT vanhoorendan theroleofquieteyetimingandlocationinthebasketballthreepointshotanewresearchparadigm
AT vickersjoann roleofquieteyetimingandlocationinthebasketballthreepointshotanewresearchparadigm
AT causerjoe roleofquieteyetimingandlocationinthebasketballthreepointshotanewresearchparadigm
AT vanhoorendan roleofquieteyetimingandlocationinthebasketballthreepointshotanewresearchparadigm