Cargando…
Decision tree model for predicting in‐hospital cardiac arrest among patients admitted with acute coronary syndrome
BACKGROUND: In‐hospital cardiac arrest (IHCA) may be preventable, with patients often showing signs of physiological deterioration before an event. Our objective was to develop and validate a simple clinical prediction model to identify the IHCA risk among cardiac arrest (CA) patients hospitalized w...
Autores principales: | Li, Hong, Wu, Ting Ting, Yang, Dong Liang, Guo, Yang Song, Liu, Pei Chang, Chen, Yuan, Xiao, Li Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Periodicals, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837031/ https://www.ncbi.nlm.nih.gov/pubmed/31509271 http://dx.doi.org/10.1002/clc.23255 |
Ejemplares similares
-
Machine learning for early prediction of in‐hospital cardiac arrest in patients with acute coronary syndromes
por: Wu, Ting Ting, et al.
Publicado: (2021) -
The relationship between the body mass index and in‐hospital mortality in patients admitted for sudden cardiac death in the United States
por: Rozen, Guy, et al.
Publicado: (2021) -
General health condition of patients hospitalized after an incident of in‐hospital or out‐of hospital sudden cardiac arrest with return of spontaneous circulation
por: Stasiowski, Michał, et al.
Publicado: (2021) -
Association of acute myocardial infarction cardiac arrest patient volume and in‐hospital mortality in the United States: Insights from the National Cardiovascular Data Registry Acute Coronary Treatment And Intervention Outcomes Network Registry
por: Kontos, Michael C., et al.
Publicado: (2019) -
Association of coronary microvascular dysfunction and cardiac bridge integrator 1, a cardiomyocyte dysfunction biomarker
por: Pacheco, Christine, et al.
Publicado: (2021)