Cargando…
Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
Predicting bioactivity and physical properties of small molecules is a central challenge in drug discovery. Deep learning is becoming the method of choice but studies to date focus on mean accuracy as the main metric. However, to replace costly and mission-critical experiments by models, a high mean...
Autores principales: | Zhang, Yao, Lee, Alpha A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837061/ https://www.ncbi.nlm.nih.gov/pubmed/31857882 http://dx.doi.org/10.1039/c9sc00616h |
Ejemplares similares
-
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
por: Ryu, Seongok, et al.
Publicado: (2019) -
Semi-supervised learning /
Publicado: (2010) -
Molecular Transformer: A Model for Uncertainty-Calibrated
Chemical Reaction Prediction
por: Schwaller, Philippe, et al.
Publicado: (2019) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019)