Cargando…

GuUGT, a glycosyltransferase from Glycyrrhiza uralensis, exhibits glycyrrhetinic acid 3- and 30-O-glycosylation

Glycyrrhiza uralensis is a well-known herbal medicine that contains triterpenoid saponins as the predominant bioactive components, and these compounds include glycyrrhetinic acid (GA)-glycoside derivatives. Although two genes encoding UDP-glycosyltransferases (UGTs) that glycosylate these derivates...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Ying, Li, Da, Wang, Jinhe, Cai, Yi, Dai, Zhubo, Jiang, Dan, Liu, Chunsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837211/
https://www.ncbi.nlm.nih.gov/pubmed/31824719
http://dx.doi.org/10.1098/rsos.191121
Descripción
Sumario:Glycyrrhiza uralensis is a well-known herbal medicine that contains triterpenoid saponins as the predominant bioactive components, and these compounds include glycyrrhetinic acid (GA)-glycoside derivatives. Although two genes encoding UDP-glycosyltransferases (UGTs) that glycosylate these derivates have been functionally characterized in G. uralensis, the mechanisms of glycosylation by other UGTs remain unknown. Based on the available transcriptome data, we isolated a UGT with expression in the roots of G. uralensis. This UGT gene possibly encodes a glucosyltransferase that glycosylates GA derivatives at the 3-OH site. Biochemical analyses revealed that the recombinant UGT enzyme could transfer a glucosyl moiety to the free 3-OH or 30-COOH groups of GA. Furthermore, engineered yeast harbouring genes involved in the biosynthetic pathway for GA-glycoside derivates produced GA-3-O-β-D-glucoside, implying that the enzyme has GA 3-O-glucosyltransferase activity in vivo. Our results could provide a frame for understand the function of the UGT gene family, and also is important for further studies of triterpenoids biosynthesis in G. uralensis.