Cargando…
Detection of arterial wall abnormalities via Bayesian model selection
Patient-specific modelling of haemodynamics in arterial networks has so far relied on parameter estimation for inexpensive or small-scale models. We describe here a Bayesian uncertainty quantification framework which makes two major advances: an efficient parallel implementation, allowing parameter...
Autores principales: | Larson, Karen, Bowman, Clark, Papadimitriou, Costas, Koumoutsakos, Petros, Matzavinos, Anastasios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837237/ https://www.ncbi.nlm.nih.gov/pubmed/31824680 http://dx.doi.org/10.1098/rsos.182229 |
Ejemplares similares
-
Data-driven prediction and origin identification of epidemics in population networks
por: Larson, Karen, et al.
Publicado: (2021) -
Dissipative particle dynamics simulation of critical pore size in a lipid bilayer membrane
por: Bowman, Clark, et al.
Publicado: (2019) -
Bayesian selection for coarse-grained models of liquid water
por: Zavadlav, Julija, et al.
Publicado: (2019) -
Multiscale modelling and simulation
por: Attinger, Sabine, et al.
Publicado: (2004) -
Scientific multi-agent reinforcement learning for wall-models of turbulent flows
por: Bae, H. Jane, et al.
Publicado: (2022)