Cargando…
Automated detection of wrong-drug prescribing errors
BACKGROUND: To assess the specificity of an algorithm designed to detect look-alike/sound-alike (LASA) medication prescribing errors in electronic health record (EHR) data. SETTING: Urban, academic medical centre, comprising a 495-bed hospital and outpatient clinic running on the Cerner EHR. We extr...
Autores principales: | Lambert, Bruce L, Galanter, William, Liu, King Lup, Falck, Suzanne, Schiff, Gordon, Rash-Foanio, Christine, Schmidt, Kelly, Shrestha, Neeha, Vaida, Allen J, Gaunt, Michael J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837246/ https://www.ncbi.nlm.nih.gov/pubmed/31391313 http://dx.doi.org/10.1136/bmjqs-2019-009420 |
Ejemplares similares
-
Cognitive tests predict real-world errors: the relationship between drug name confusion rates in laboratory-based memory and perception tests and corresponding error rates in large pharmacy chains
por: Schroeder, Scott R, et al.
Publicado: (2017) -
Indication Alerts Intercept Drug Name Confusion Errors during Computerized Entry of Medication Orders
por: Galanter, William L., et al.
Publicado: (2014) -
Learning optimal opioid prescribing and monitoring: a simulation study of medical residents
por: Kannampallil, Thomas G, et al.
Publicado: (2018) -
Characterizing the pain score trajectories of hospitalized adult medical and surgical patients: a retrospective cohort study
por: Kannampallil, Thomas, et al.
Publicado: (2016) -
A primary care, electronic health record-based strategy to promote safe drug use: study protocol for a randomized controlled trial
por: Przytula, Kamila, et al.
Publicado: (2015)