Cargando…

Redox biology and gastric carcinogenesis: the role of Helicobacter pylori

Almost half the world's population is infected by Helicobacter pylori (H. pylori). This bacterium increases the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human stomach, and this has been reported to impact upon gastric inflammation and carcinogenesis. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Handa, Osamu, Naito, Yuji, Yoshikawa, Toshikazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837368/
https://www.ncbi.nlm.nih.gov/pubmed/21605492
http://dx.doi.org/10.1179/174329211X12968219310756
Descripción
Sumario:Almost half the world's population is infected by Helicobacter pylori (H. pylori). This bacterium increases the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human stomach, and this has been reported to impact upon gastric inflammation and carcinogenesis. However, the precise mechanism by which H. pylori induces gastric carcinogenesis is presently unclear. Although the main source of ROS/RNS production is possibly the host neutrophil, H. pylori itself produces O(2)(•−). Furthermore, its cytotoxin induces ROS production by gastric epithelial cells, which might affect intracellular signal transduction, resulting in gastric carcinogenesis. Excessive ROS production in gastric epithelial cells can cause DNA damage and thus might be involved in gastric carcinogenesis. Understanding the molecular mechanism of H. pylori-induced carcinogenesis is important for developing new strategies against gastric cancer.