Cargando…
Numerical study on the start and unstart phenomena in a scramjet inlet-isolator model
Inlet unstart and buzz in scramjet engines must be prevented for the stable operation of the engines. In the present study, the characteristics of the inlet start, unstart and buzz phenomena in a scramjet engine inlet model are investigated using numerical analysis with the RANS-based OpenFOAM solve...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837497/ https://www.ncbi.nlm.nih.gov/pubmed/31697771 http://dx.doi.org/10.1371/journal.pone.0224994 |
Sumario: | Inlet unstart and buzz in scramjet engines must be prevented for the stable operation of the engines. In the present study, the characteristics of the inlet start, unstart and buzz phenomena in a scramjet engine inlet model are investigated using numerical analysis with the RANS-based OpenFOAM solver. The results for the inlet start case with a small computational domain that includes only the inlet-isolator part are in good agreement with existing numerical and experimental results. However, for the inlet unstart case, the computational domain must be wide enough to consider the interactions between the upstream of the inlet and the internal flow of the inlet to predict the inlet unstart and buzz phenomena in the inlet test model. The present results show fairly good agreement with existing experimental results with the buzz phenomenon. The effects of boundary layer profiles on the buzz oscillation frequency and amplitude are also addressed. |
---|