Cargando…
Seasonal influenza: Modelling approaches to capture immunity propagation
Seasonal influenza poses serious problems for global public health, being a significant contributor to morbidity and mortality. In England, there has been a long-standing national vaccination programme, with vaccination of at-risk groups and children offering partial protection against infection. Tr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837557/ https://www.ncbi.nlm.nih.gov/pubmed/31658250 http://dx.doi.org/10.1371/journal.pcbi.1007096 |
_version_ | 1783467088645455872 |
---|---|
author | Hill, Edward M. Petrou, Stavros de Lusignan, Simon Yonova, Ivelina Keeling, Matt J. |
author_facet | Hill, Edward M. Petrou, Stavros de Lusignan, Simon Yonova, Ivelina Keeling, Matt J. |
author_sort | Hill, Edward M. |
collection | PubMed |
description | Seasonal influenza poses serious problems for global public health, being a significant contributor to morbidity and mortality. In England, there has been a long-standing national vaccination programme, with vaccination of at-risk groups and children offering partial protection against infection. Transmission models have been a fundamental component of analysis, informing the efficient use of limited resources. However, these models generally treat each season and each strain circulating within that season in isolation. Here, we amalgamate multiple data sources to calibrate a susceptible-latent-infected-recovered type transmission model for seasonal influenza, incorporating the four main strains and mechanisms linking prior season epidemiological outcomes to immunity at the beginning of the following season. Data pertaining to nine influenza seasons, starting with the 2009/10 season, informed our estimates for epidemiological processes, virological sample positivity, vaccine uptake and efficacy attributes, and general practitioner influenza-like-illness consultations as reported by the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC). We performed parameter inference via approximate Bayesian computation to assess strain transmissibility, dependence of present season influenza immunity on prior protection, and variability in the influenza case ascertainment across seasons. This produced reasonable agreement between model and data on the annual strain composition. Parameter fits indicated that the propagation of immunity from one season to the next is weaker if vaccine derived, compared to natural immunity from infection. Projecting the dynamics forward in time suggests that while historic immunity plays an important role in determining annual strain composition, the variability in vaccine efficacy hampers our ability to make long-term predictions. |
format | Online Article Text |
id | pubmed-6837557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-68375572019-11-12 Seasonal influenza: Modelling approaches to capture immunity propagation Hill, Edward M. Petrou, Stavros de Lusignan, Simon Yonova, Ivelina Keeling, Matt J. PLoS Comput Biol Research Article Seasonal influenza poses serious problems for global public health, being a significant contributor to morbidity and mortality. In England, there has been a long-standing national vaccination programme, with vaccination of at-risk groups and children offering partial protection against infection. Transmission models have been a fundamental component of analysis, informing the efficient use of limited resources. However, these models generally treat each season and each strain circulating within that season in isolation. Here, we amalgamate multiple data sources to calibrate a susceptible-latent-infected-recovered type transmission model for seasonal influenza, incorporating the four main strains and mechanisms linking prior season epidemiological outcomes to immunity at the beginning of the following season. Data pertaining to nine influenza seasons, starting with the 2009/10 season, informed our estimates for epidemiological processes, virological sample positivity, vaccine uptake and efficacy attributes, and general practitioner influenza-like-illness consultations as reported by the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC). We performed parameter inference via approximate Bayesian computation to assess strain transmissibility, dependence of present season influenza immunity on prior protection, and variability in the influenza case ascertainment across seasons. This produced reasonable agreement between model and data on the annual strain composition. Parameter fits indicated that the propagation of immunity from one season to the next is weaker if vaccine derived, compared to natural immunity from infection. Projecting the dynamics forward in time suggests that while historic immunity plays an important role in determining annual strain composition, the variability in vaccine efficacy hampers our ability to make long-term predictions. Public Library of Science 2019-10-28 /pmc/articles/PMC6837557/ /pubmed/31658250 http://dx.doi.org/10.1371/journal.pcbi.1007096 Text en © 2019 Hill et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hill, Edward M. Petrou, Stavros de Lusignan, Simon Yonova, Ivelina Keeling, Matt J. Seasonal influenza: Modelling approaches to capture immunity propagation |
title | Seasonal influenza: Modelling approaches to capture immunity propagation |
title_full | Seasonal influenza: Modelling approaches to capture immunity propagation |
title_fullStr | Seasonal influenza: Modelling approaches to capture immunity propagation |
title_full_unstemmed | Seasonal influenza: Modelling approaches to capture immunity propagation |
title_short | Seasonal influenza: Modelling approaches to capture immunity propagation |
title_sort | seasonal influenza: modelling approaches to capture immunity propagation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837557/ https://www.ncbi.nlm.nih.gov/pubmed/31658250 http://dx.doi.org/10.1371/journal.pcbi.1007096 |
work_keys_str_mv | AT hilledwardm seasonalinfluenzamodellingapproachestocaptureimmunitypropagation AT petroustavros seasonalinfluenzamodellingapproachestocaptureimmunitypropagation AT delusignansimon seasonalinfluenzamodellingapproachestocaptureimmunitypropagation AT yonovaivelina seasonalinfluenzamodellingapproachestocaptureimmunitypropagation AT keelingmattj seasonalinfluenzamodellingapproachestocaptureimmunitypropagation |