Cargando…
The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice
Nitrate signaling integrates and coordinates gene expression and plant growth; however, the underlying molecular mechanisms involved remain poorly understood. Our previous study revealed that rice calcineurin B-like protein 1 (OsCBL1) modulates lateral root elongation by affecting auxin biosynthesis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837758/ https://www.ncbi.nlm.nih.gov/pubmed/31697744 http://dx.doi.org/10.1371/journal.pone.0224962 |
Sumario: | Nitrate signaling integrates and coordinates gene expression and plant growth; however, the underlying molecular mechanisms involved remain poorly understood. Our previous study revealed that rice calcineurin B-like protein 1 (OsCBL1) modulates lateral root elongation by affecting auxin biosynthesis. Here, we report that OsCBL1 also modulates nitrate signaling to regulate rice seedlings growth. Compared with wild-type seedlings, seedlings of OsCBL1-knockdown (OsCBL1-KD) plants showed a suppressed growth phenotype, which included reduced root and shoot fresh weights and shorter radicles, crown roots, and lateral roots, when grown in nitrogen-free conditions. Although the growth defects of OsCBL1-KD plants could be partially rescued by the addition of nitrate to the growth conditions, the nitrate uptake capability of the OsCBL1-KD plants did not differ from that of wild-type plants as assessed via nitrate content and (15)NO(3)(−) influx experiments. The nitrate-regulated expression of nitrate signal sentinel genes (OsNRT2.1 and OsNRT2.2) was affected in the OsCBL1-KD plants under both long- and short-term nitrate treatments. Overall, our results showed a novel role for OsCBL1 in the regulation of nitrate signaling and nitrate-mediated rice growth. |
---|