Cargando…
Bacterial biodiversity drives the evolution of CRISPR-based phage resistance
Approximately half of all bacterial species encode CRISPR-Cas adaptive immune systems(1), which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome(2). Whereas CRISPR loci evolve rapidly in natural environments...
Autores principales: | Alseth, Ellinor O, Pursey, Elizabeth, Luján, Adela M, McLeod, Isobel, Rollie, Clare, Westra, Edze R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837874/ https://www.ncbi.nlm.nih.gov/pubmed/31645729 http://dx.doi.org/10.1038/s41586-019-1662-9 |
Ejemplares similares
-
Targeting of temperate phages drives loss of type I CRISPR-Cas systems
por: Rollie, Clare, et al.
Publicado: (2020) -
The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity
por: Chevallereau, Anne, et al.
Publicado: (2019) -
Phage gene expression and host responses lead to infection-dependent costs of CRISPR immunity
por: Meaden, Sean, et al.
Publicado: (2020) -
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity
por: Landsberger, Mariann, et al.
Publicado: (2018) -
Transient eco-evolutionary dynamics early in a phage epidemic have strong and lasting impact on the long-term evolution of bacterial defences
por: Watson, Bridget Nora Janice, et al.
Publicado: (2023)