Cargando…
Systems NMR: single-sample quantification of RNA, proteins, and metabolites for biomolecular network analysis
Cellular behavior is controlled by the interplay of diverse biomolecules. Most experimental methods, however, can monitor only a single molecule class or reaction type at a time. We developed an in vitro Nuclear Magnetic Resonance spectroscopy (NMR) approach, which permitted dynamic quantification o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837886/ https://www.ncbi.nlm.nih.gov/pubmed/31363225 http://dx.doi.org/10.1038/s41592-019-0495-7 |
Sumario: | Cellular behavior is controlled by the interplay of diverse biomolecules. Most experimental methods, however, can monitor only a single molecule class or reaction type at a time. We developed an in vitro Nuclear Magnetic Resonance spectroscopy (NMR) approach, which permitted dynamic quantification of an entire “heterotypic” network – simultaneously monitoring three distinct molecule classes (metabolites, proteins, RNA) and all elementary reaction types (bimolecular interactions, catalysis, unimolecular changes). Focusing on an 8-reaction co-transcriptional RNA folding network, in a single sample we recorded over 35 time-points with over 170 observables each, and accurately determined 5 core reaction constants in multiplex. This reconstruction revealed unexpected cross-talk between the different reactions. We further observed dynamic phase-separation in a system of five distinct RNA binding domains in the course of the RNA transcription reaction. Our Systems NMR approach provides a deeper understanding of biological network dynamics by combining the dynamic resolution of biochemical assays and the multiplexing ability of “omics”. |
---|