Cargando…

Restricting Lower Limb Flail is Key to Preventing Fatal Pelvic Blast Injury

Pelvic vascular injury in the casualty of an explosive insult is a principal risk factor for increased mortality. The mechanism of injury has not previously been investigated in a physical model. In this study, a small-animal model of pelvic blast injury with a shock-tube mediated blast wave was uti...

Descripción completa

Detalles Bibliográficos
Autores principales: Rankin, Iain A., Nguyen, Thuy-Tien, Carpanen, Diagarajen, Clasper, Jonathan C., Masouros, Spyros D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838040/
https://www.ncbi.nlm.nih.gov/pubmed/31147806
http://dx.doi.org/10.1007/s10439-019-02296-z
Descripción
Sumario:Pelvic vascular injury in the casualty of an explosive insult is a principal risk factor for increased mortality. The mechanism of injury has not previously been investigated in a physical model. In this study, a small-animal model of pelvic blast injury with a shock-tube mediated blast wave was utilised and showed that lower limb flail is necessary for an unstable pelvic fracture with vascular injury to occur. One hundred and seventy-three cadaveric mice underwent shock-tube blast testing and subsequent injury analysis. Increasingly displaced pelvic fractures and an increase in the incidence of pelvic vascular injury were seen with increasing lower limb flail; the 50% risk of vascular injury was 66° of lower limb flail out from the midline (95% confidence intervals 59°–75°). Pre-blast surgical amputation at the hip or knee showed the thigh was essential to result in pelvic displacement whilst the leg was not. These findings, corroborated by clinical data, bring a paradigm shift in our understanding of the mechanism of blast injury. Restriction of lower limb flail in the human, through personal protective equipment, has the potential to mitigate the effects of pelvic blast injury.