Cargando…

Cumulative impact of anti-sea lice treatment (azamethiphos) on health status of Rainbow trout (Oncorhynchus mykiss, Walbaum 1792) in aquaculture

Despite its widespread use in aquaculture, the impact of chemical anti-sea lice treatment on salmonids following application in a commercial farm has not been previously reported. This work reports the cumulative effect of three consecutive anti-sea lice treatments using azamethiphos on the health s...

Descripción completa

Detalles Bibliográficos
Autores principales: Barisic, Josip, Cannon, Stuart, Quinn, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838116/
https://www.ncbi.nlm.nih.gov/pubmed/31700034
http://dx.doi.org/10.1038/s41598-019-52636-1
Descripción
Sumario:Despite its widespread use in aquaculture, the impact of chemical anti-sea lice treatment on salmonids following application in a commercial farm has not been previously reported. This work reports the cumulative effect of three consecutive anti-sea lice treatments using azamethiphos on the health status of aquaculture reared rainbow trout through the investigation of clinical chemistry, histopathology and proteome expression. The serum biomarkers showed decreasing trends in total protein, albumin and potassium concentrations and an average increase of total bilirubin and phosphate concentration towards the end of the treatment period. Principal component analysis clearly distinguished correlated pairs of biomarkers and also demonstrates a shift from acute to chronic effects as treatment progresses. Proteomic analysis confirmed alterations of proteins involved in clot formation, immune reaction and free heme binding. Tissue damage after the series of delousing treatments, exhibited increased deposits of hemosiderin. Results from this study suggest an impact of azamethiphos on trout health through intravascular haemolysis and consequently from pathophysiologic process of haemoglobin metabolism and its products, causing chronic kidney injury from iron deposits. This is the first report to demonstrate in fish the impact of active iron accumulation in different organs from physiological processes that can seriously impair normal function.