Cargando…

Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters

Analyzing the fluid behavior in complex porous media like gas diffusion layers (GDLs) in polymer electrolyte fuel cells (PEFCs) can be accurately done using the lattice Boltzmann method (LBM). This article shows the data obtained from a study in which diffusion parameters such as porosity, gas phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Espinoza-Andaluz, Mayken, Reyna, Raul, Qi, Yuanxin, Li, Tingshuai, Andersson, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838375/
https://www.ncbi.nlm.nih.gov/pubmed/31720338
http://dx.doi.org/10.1016/j.dib.2019.104688
_version_ 1783467210630496256
author Espinoza-Andaluz, Mayken
Reyna, Raul
Qi, Yuanxin
Li, Tingshuai
Andersson, Martin
author_facet Espinoza-Andaluz, Mayken
Reyna, Raul
Qi, Yuanxin
Li, Tingshuai
Andersson, Martin
author_sort Espinoza-Andaluz, Mayken
collection PubMed
description Analyzing the fluid behavior in complex porous media like gas diffusion layers (GDLs) in polymer electrolyte fuel cells (PEFCs) can be accurately done using the lattice Boltzmann method (LBM). This article shows the data obtained from a study in which diffusion parameters such as porosity, gas phase tortuosity and diffusibility are computed considering simulated porous media [1]. The data were computed when a water drop obstacle is placed inside the GDL domain and the size of the water-drop is varied. Additionally, figures showing the evolution of the flow velocity field are presented alongside graphics that presents the change in local and bulk porosity for each obstacle size. Finally, there is a detailed method explanation concerning the implementation of the lattice Boltzmann method and a general description of computational codes for the domain and obstacle generation as well as the boundary conditions simulation. Data and processes in this article can be exploited in new attempts to solve real case problems in complex mesoscale media.
format Online
Article
Text
id pubmed-6838375
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68383752019-11-12 Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters Espinoza-Andaluz, Mayken Reyna, Raul Qi, Yuanxin Li, Tingshuai Andersson, Martin Data Brief Energy Analyzing the fluid behavior in complex porous media like gas diffusion layers (GDLs) in polymer electrolyte fuel cells (PEFCs) can be accurately done using the lattice Boltzmann method (LBM). This article shows the data obtained from a study in which diffusion parameters such as porosity, gas phase tortuosity and diffusibility are computed considering simulated porous media [1]. The data were computed when a water drop obstacle is placed inside the GDL domain and the size of the water-drop is varied. Additionally, figures showing the evolution of the flow velocity field are presented alongside graphics that presents the change in local and bulk porosity for each obstacle size. Finally, there is a detailed method explanation concerning the implementation of the lattice Boltzmann method and a general description of computational codes for the domain and obstacle generation as well as the boundary conditions simulation. Data and processes in this article can be exploited in new attempts to solve real case problems in complex mesoscale media. Elsevier 2019-10-19 /pmc/articles/PMC6838375/ /pubmed/31720338 http://dx.doi.org/10.1016/j.dib.2019.104688 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Energy
Espinoza-Andaluz, Mayken
Reyna, Raul
Qi, Yuanxin
Li, Tingshuai
Andersson, Martin
Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
title Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
title_full Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
title_fullStr Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
title_full_unstemmed Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
title_short Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
title_sort computational simulation data using the lattice boltzmann method to generate correlations for gas diffusion layer parameters
topic Energy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838375/
https://www.ncbi.nlm.nih.gov/pubmed/31720338
http://dx.doi.org/10.1016/j.dib.2019.104688
work_keys_str_mv AT espinozaandaluzmayken computationalsimulationdatausingthelatticeboltzmannmethodtogeneratecorrelationsforgasdiffusionlayerparameters
AT reynaraul computationalsimulationdatausingthelatticeboltzmannmethodtogeneratecorrelationsforgasdiffusionlayerparameters
AT qiyuanxin computationalsimulationdatausingthelatticeboltzmannmethodtogeneratecorrelationsforgasdiffusionlayerparameters
AT litingshuai computationalsimulationdatausingthelatticeboltzmannmethodtogeneratecorrelationsforgasdiffusionlayerparameters
AT anderssonmartin computationalsimulationdatausingthelatticeboltzmannmethodtogeneratecorrelationsforgasdiffusionlayerparameters