Cargando…

Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome

BACKGROUND: Sjögren's syndrome (SS) is one of the most common autoimmune disorders leading to exocrine gland dysfunction. Both immune-dependent processes – like Type I Interferon (IFN) signaling and immune-independent processes – such as calcium signaling in epithelial cells – contribute to dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Shyh-Ing, Tandon, Mayank, Teos, Leyla, Zheng, ChangYu, Warner, Blake M., Alevizos, Ilias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838412/
https://www.ncbi.nlm.nih.gov/pubmed/31597594
http://dx.doi.org/10.1016/j.ebiom.2019.09.010
_version_ 1783467217923342336
author Jang, Shyh-Ing
Tandon, Mayank
Teos, Leyla
Zheng, ChangYu
Warner, Blake M.
Alevizos, Ilias
author_facet Jang, Shyh-Ing
Tandon, Mayank
Teos, Leyla
Zheng, ChangYu
Warner, Blake M.
Alevizos, Ilias
author_sort Jang, Shyh-Ing
collection PubMed
description BACKGROUND: Sjögren's syndrome (SS) is one of the most common autoimmune disorders leading to exocrine gland dysfunction. Both immune-dependent processes – like Type I Interferon (IFN) signaling and immune-independent processes – such as calcium signaling in epithelial cells – contribute to disease pathophysiology. However, a mechanistic link between these processes has not been demonstrated. METHODS: Primary human salivary gland cells were used to evaluate the differential expression of miRNAs with smRNA-seq in primary epithelial cells culture and digital PCR was conducted in SS human salivary glands (SG) biopsies to verify the results. With siRNA screening and pull-down assays to establish the role of miRNA in IFN activation. FINDINGS: Activation of IFN-β by miR-1248 is through the direct association with both RIG-I and AGO2. Further functional studies establish a unique dual functional role of miR-1248 in phSG cells: i) activation of the RIG-I pathway by acting as ligand of this sensor leading to IFN production and ii) regulation of the expression of mRNAs through the canonical microRNA function. Importantly, ITPR3, a key component of calcium signaling in epithelial cells, that has previously shown to be downregulated in SS SG, was directly targeted and downregulated by miR-1248, inducing the same functional calcium signaling changes as observed in SS SGs. INTERPRETATION: Identification of the first endogenous mammalian microRNA that binds to RIG-I inducing IFN production but also demonstrate a novel pathophysiological underlying mechanism in which miR-1248 overexpression links two major pathways associated with SS, namely activation of IFN production with modulation of calcium signaling. Together, these findings suggest a unifying hypothesis for the immune-independent and -dependent processes contributing to the pathogenesis of SS. FUND: This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Dental and Craniofacial Research (NIDCR).
format Online
Article
Text
id pubmed-6838412
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68384122019-11-12 Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome Jang, Shyh-Ing Tandon, Mayank Teos, Leyla Zheng, ChangYu Warner, Blake M. Alevizos, Ilias EBioMedicine Research paper BACKGROUND: Sjögren's syndrome (SS) is one of the most common autoimmune disorders leading to exocrine gland dysfunction. Both immune-dependent processes – like Type I Interferon (IFN) signaling and immune-independent processes – such as calcium signaling in epithelial cells – contribute to disease pathophysiology. However, a mechanistic link between these processes has not been demonstrated. METHODS: Primary human salivary gland cells were used to evaluate the differential expression of miRNAs with smRNA-seq in primary epithelial cells culture and digital PCR was conducted in SS human salivary glands (SG) biopsies to verify the results. With siRNA screening and pull-down assays to establish the role of miRNA in IFN activation. FINDINGS: Activation of IFN-β by miR-1248 is through the direct association with both RIG-I and AGO2. Further functional studies establish a unique dual functional role of miR-1248 in phSG cells: i) activation of the RIG-I pathway by acting as ligand of this sensor leading to IFN production and ii) regulation of the expression of mRNAs through the canonical microRNA function. Importantly, ITPR3, a key component of calcium signaling in epithelial cells, that has previously shown to be downregulated in SS SG, was directly targeted and downregulated by miR-1248, inducing the same functional calcium signaling changes as observed in SS SGs. INTERPRETATION: Identification of the first endogenous mammalian microRNA that binds to RIG-I inducing IFN production but also demonstrate a novel pathophysiological underlying mechanism in which miR-1248 overexpression links two major pathways associated with SS, namely activation of IFN production with modulation of calcium signaling. Together, these findings suggest a unifying hypothesis for the immune-independent and -dependent processes contributing to the pathogenesis of SS. FUND: This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Dental and Craniofacial Research (NIDCR). Elsevier 2019-10-06 /pmc/articles/PMC6838412/ /pubmed/31597594 http://dx.doi.org/10.1016/j.ebiom.2019.09.010 Text en © 2019 Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Jang, Shyh-Ing
Tandon, Mayank
Teos, Leyla
Zheng, ChangYu
Warner, Blake M.
Alevizos, Ilias
Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome
title Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome
title_full Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome
title_fullStr Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome
title_full_unstemmed Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome
title_short Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome
title_sort dual function of mir-1248 links interferon induction and calcium signaling defects in sjögren's syndrome
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838412/
https://www.ncbi.nlm.nih.gov/pubmed/31597594
http://dx.doi.org/10.1016/j.ebiom.2019.09.010
work_keys_str_mv AT jangshyhing dualfunctionofmir1248linksinterferoninductionandcalciumsignalingdefectsinsjogrenssyndrome
AT tandonmayank dualfunctionofmir1248linksinterferoninductionandcalciumsignalingdefectsinsjogrenssyndrome
AT teosleyla dualfunctionofmir1248linksinterferoninductionandcalciumsignalingdefectsinsjogrenssyndrome
AT zhengchangyu dualfunctionofmir1248linksinterferoninductionandcalciumsignalingdefectsinsjogrenssyndrome
AT warnerblakem dualfunctionofmir1248linksinterferoninductionandcalciumsignalingdefectsinsjogrenssyndrome
AT alevizosilias dualfunctionofmir1248linksinterferoninductionandcalciumsignalingdefectsinsjogrenssyndrome