Cargando…

Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating...

Descripción completa

Detalles Bibliográficos
Autores principales: Foster, Simon R., Hauser, Alexander S., Vedel, Line, Strachan, Ryan T., Huang, Xi-Ping, Gavin, Ariana C., Shah, Sushrut D., Nayak, Ajay P., Haugaard-Kedström, Linda M., Penn, Raymond B., Roth, Bryan L., Bräuner-Osborne, Hans, Gloriam, David E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838683/
https://www.ncbi.nlm.nih.gov/pubmed/31675498
http://dx.doi.org/10.1016/j.cell.2019.10.010
Descripción
Sumario:The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT: