Cargando…
The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals
Acquired Immune Deficiency Syndrome is the most severe phase of Human Immunodeficiency Virus (HIV) infection. Recent studies have seen an effort to isolate phytochemicals from plants to repress HIV, but less studies have focused on the effects of these phytochemicals on the activities of enzymes/tra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838811/ https://www.ncbi.nlm.nih.gov/pubmed/31720444 http://dx.doi.org/10.1016/j.heliyon.2019.e02565 |
_version_ | 1783467289784352768 |
---|---|
author | Kehinde, Idowu Ramharack, Pritika Nlooto, Manimbulu Gordon, Michelle |
author_facet | Kehinde, Idowu Ramharack, Pritika Nlooto, Manimbulu Gordon, Michelle |
author_sort | Kehinde, Idowu |
collection | PubMed |
description | Acquired Immune Deficiency Syndrome is the most severe phase of Human Immunodeficiency Virus (HIV) infection. Recent studies have seen an effort to isolate phytochemicals from plants to repress HIV, but less studies have focused on the effects of these phytochemicals on the activities of enzymes/transporters involved in the metabolism of these drugs, which is one of the aims of this study and, to examine the antiviral activity of these compounds against HIV-1 protease enzyme using computational tools. Centre of Awareness-Food Supplement (COA®-FS) herbal medicine, has been said to have potential anti-HIV features. SWISSTARGETPREDICTION and SWISSADME servers were used for determination of the enzymes/transporters involved in the metabolism of these protease inhibitor drugs, (PIs) (Atazanavir, Lopinavir, Darunavir, Saquinavir) and the effects of the selected phytochemicals on the enzymes/transporters involved in the metabolism of these PIs. Using Computational tools, potential structural inhibitory activities of these phytochemicals were explored. Two sub-families of Cytochrome P450 enzymes (CYP3A4 and CYP2C19) and Permeability glycoprotein (P-gp) were predicted to be involved in metabolism of the PIs. Six phytochemicals (Geranin, Apigenin, Fisetin, Luteolin, Phthalic acid and Gallic acid) were predicted to be inhibitors of CYP3A4 and, may slowdown elimination of PIs thereby maintain optimal PIs concentrations. Free binding energy analysis for antiviral activities identified four phytochemicals with favourable binding landscapes with HIV-1 protease enzyme. Epigallocatechin gallate and Kaempferol-7-glucoside exhibited pronounced structural evidence as potential HIV-1 protease enzyme inhibitors. This study acts as a steppingstone toward the use of natural products against diseases that are plagued with adverse drug-interactions. |
format | Online Article Text |
id | pubmed-6838811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68388112019-11-12 The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals Kehinde, Idowu Ramharack, Pritika Nlooto, Manimbulu Gordon, Michelle Heliyon Article Acquired Immune Deficiency Syndrome is the most severe phase of Human Immunodeficiency Virus (HIV) infection. Recent studies have seen an effort to isolate phytochemicals from plants to repress HIV, but less studies have focused on the effects of these phytochemicals on the activities of enzymes/transporters involved in the metabolism of these drugs, which is one of the aims of this study and, to examine the antiviral activity of these compounds against HIV-1 protease enzyme using computational tools. Centre of Awareness-Food Supplement (COA®-FS) herbal medicine, has been said to have potential anti-HIV features. SWISSTARGETPREDICTION and SWISSADME servers were used for determination of the enzymes/transporters involved in the metabolism of these protease inhibitor drugs, (PIs) (Atazanavir, Lopinavir, Darunavir, Saquinavir) and the effects of the selected phytochemicals on the enzymes/transporters involved in the metabolism of these PIs. Using Computational tools, potential structural inhibitory activities of these phytochemicals were explored. Two sub-families of Cytochrome P450 enzymes (CYP3A4 and CYP2C19) and Permeability glycoprotein (P-gp) were predicted to be involved in metabolism of the PIs. Six phytochemicals (Geranin, Apigenin, Fisetin, Luteolin, Phthalic acid and Gallic acid) were predicted to be inhibitors of CYP3A4 and, may slowdown elimination of PIs thereby maintain optimal PIs concentrations. Free binding energy analysis for antiviral activities identified four phytochemicals with favourable binding landscapes with HIV-1 protease enzyme. Epigallocatechin gallate and Kaempferol-7-glucoside exhibited pronounced structural evidence as potential HIV-1 protease enzyme inhibitors. This study acts as a steppingstone toward the use of natural products against diseases that are plagued with adverse drug-interactions. Elsevier 2019-11-01 /pmc/articles/PMC6838811/ /pubmed/31720444 http://dx.doi.org/10.1016/j.heliyon.2019.e02565 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Kehinde, Idowu Ramharack, Pritika Nlooto, Manimbulu Gordon, Michelle The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals |
title | The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals |
title_full | The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals |
title_fullStr | The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals |
title_full_unstemmed | The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals |
title_short | The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals |
title_sort | pharmacokinetic properties of hiv-1 protease inhibitors: a computational perspective on herbal phytochemicals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838811/ https://www.ncbi.nlm.nih.gov/pubmed/31720444 http://dx.doi.org/10.1016/j.heliyon.2019.e02565 |
work_keys_str_mv | AT kehindeidowu thepharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT ramharackpritika thepharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT nlootomanimbulu thepharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT gordonmichelle thepharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT kehindeidowu pharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT ramharackpritika pharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT nlootomanimbulu pharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals AT gordonmichelle pharmacokineticpropertiesofhiv1proteaseinhibitorsacomputationalperspectiveonherbalphytochemicals |