Cargando…
Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation
Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activitie...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838868/ https://www.ncbi.nlm.nih.gov/pubmed/31737611 http://dx.doi.org/10.3389/fchem.2019.00742 |
_version_ | 1783467291734704128 |
---|---|
author | Qvortrup, Katrine Hultqvist, Louise Dahl Nilsson, Martin Jakobsen, Tim Holm Jansen, Charlotte Uldahl Uhd, Jesper Andersen, Jens Bo Nielsen, Thomas E. Givskov, Michael Tolker-Nielsen, Tim |
author_facet | Qvortrup, Katrine Hultqvist, Louise Dahl Nilsson, Martin Jakobsen, Tim Holm Jansen, Charlotte Uldahl Uhd, Jesper Andersen, Jens Bo Nielsen, Thomas E. Givskov, Michael Tolker-Nielsen, Tim |
author_sort | Qvortrup, Katrine |
collection | PubMed |
description | Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activities and antibiotic treatment. Therefore, biofilm infections are difficult or impossible to treat with our current armory of antibiotics. The challenges associated with biofilm infections have urged researchers to pursue a better understanding of the molecular mechanisms that are involved in the formation and dispersal of biofilms, and this has led to the identification of several steps that could be targeted in order to eradicate these challenging infections. Here we describe mechanisms that are involved in the regulation of biofilm development in Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii, and provide examples of chemical compounds that have been developed to specifically inhibit these processes. These compounds include (i) pilicides and curlicides which inhibit the initial steps of biofilm formation by E. coli; (ii) compounds that interfere with c-di-GMP signaling in P. aeruginosa and E. coli; and (iii) compounds that inhibit quorum-sensing in P. aeruginosa and A. baumannii. In cases where compound series have a defined molecular target, we focus on elucidating structure activity relationship (SAR) trends within the particular compound series. |
format | Online Article Text |
id | pubmed-6838868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68388682019-11-15 Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation Qvortrup, Katrine Hultqvist, Louise Dahl Nilsson, Martin Jakobsen, Tim Holm Jansen, Charlotte Uldahl Uhd, Jesper Andersen, Jens Bo Nielsen, Thomas E. Givskov, Michael Tolker-Nielsen, Tim Front Chem Chemistry Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activities and antibiotic treatment. Therefore, biofilm infections are difficult or impossible to treat with our current armory of antibiotics. The challenges associated with biofilm infections have urged researchers to pursue a better understanding of the molecular mechanisms that are involved in the formation and dispersal of biofilms, and this has led to the identification of several steps that could be targeted in order to eradicate these challenging infections. Here we describe mechanisms that are involved in the regulation of biofilm development in Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii, and provide examples of chemical compounds that have been developed to specifically inhibit these processes. These compounds include (i) pilicides and curlicides which inhibit the initial steps of biofilm formation by E. coli; (ii) compounds that interfere with c-di-GMP signaling in P. aeruginosa and E. coli; and (iii) compounds that inhibit quorum-sensing in P. aeruginosa and A. baumannii. In cases where compound series have a defined molecular target, we focus on elucidating structure activity relationship (SAR) trends within the particular compound series. Frontiers Media S.A. 2019-11-01 /pmc/articles/PMC6838868/ /pubmed/31737611 http://dx.doi.org/10.3389/fchem.2019.00742 Text en Copyright © 2019 Qvortrup, Hultqvist, Nilsson, Jakobsen, Jansen, Uhd, Andersen, Nielsen, Givskov and Tolker-Nielsen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Qvortrup, Katrine Hultqvist, Louise Dahl Nilsson, Martin Jakobsen, Tim Holm Jansen, Charlotte Uldahl Uhd, Jesper Andersen, Jens Bo Nielsen, Thomas E. Givskov, Michael Tolker-Nielsen, Tim Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation |
title | Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation |
title_full | Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation |
title_fullStr | Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation |
title_full_unstemmed | Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation |
title_short | Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation |
title_sort | small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838868/ https://www.ncbi.nlm.nih.gov/pubmed/31737611 http://dx.doi.org/10.3389/fchem.2019.00742 |
work_keys_str_mv | AT qvortrupkatrine smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT hultqvistlouisedahl smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT nilssonmartin smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT jakobsentimholm smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT jansencharlotteuldahl smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT uhdjesper smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT andersenjensbo smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT nielsenthomase smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT givskovmichael smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation AT tolkernielsentim smallmoleculeantibiofilmagentsdevelopedonthebasisofmechanisticunderstandingofbiofilmformation |