Cargando…
RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures
BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentation and feature extraction of plant roots fro...
Autores principales: | Yasrab, Robail, Atkinson, Jonathan A, Wells, Darren M, French, Andrew P, Pridmore, Tony P, Pound, Michael P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839032/ https://www.ncbi.nlm.nih.gov/pubmed/31702012 http://dx.doi.org/10.1093/gigascience/giz123 |
Ejemplares similares
-
Uncovering the hidden half of plants using new advances in root phenotyping
por: Atkinson, Jonathan A, et al.
Publicado: (2019) -
Convolutional Neural Net-Based Cassava Storage Root Counting Using Real and Synthetic Images
por: Atanbori, John, et al.
Publicado: (2019) -
Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots
por: Passot, Sixtine, et al.
Publicado: (2016) -
A low-cost aeroponic phenotyping system for storage root development: unravelling the below-ground secrets of cassava (Manihot esculenta)
por: Selvaraj, Michael Gomez, et al.
Publicado: (2019) -
Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography
por: Mairhofer, Stefan, et al.
Publicado: (2013)