Cargando…
Factors influencing high respiratory mortality in coal-mining counties: a repeated cross-sectional study
BACKGROUND: Previous studies have associated elevated mortality risk in central Appalachia with coal-mining activities, but few have explored how different non-coal factors influence the association within each county. Consequently, there is a knowledge gap in identifying effective ways to address h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839055/ https://www.ncbi.nlm.nih.gov/pubmed/31703658 http://dx.doi.org/10.1186/s12889-019-7858-y |
Sumario: | BACKGROUND: Previous studies have associated elevated mortality risk in central Appalachia with coal-mining activities, but few have explored how different non-coal factors influence the association within each county. Consequently, there is a knowledge gap in identifying effective ways to address health disparities in coal-mining counties. To specifically address this knowledge gap, this study estimated the effect of living in a coal-mining county on non-malignant respiratory diseases (NMRD) mortality, and defined this as “coal-county effect.” We also investigated what factors may accentuate or attenuate the coal-county effect. METHODS: An ecological epidemiology protocol was designed to observe the characteristics of three populations and to identify the effects of coal-mining on community health. Records for seven coal-mining counties (n = 19,692) were obtained with approvals from the Virginia Department of Health Office of Vital Statistics for the years 2005 to 2012. Also requested were records from three adjacent coal counties (n = 10,425) to provide a geographic comparison. For a baseline comparison, records were requested for eleven tobacco-producing counties (n = 27,800). We analyzed the association of 57,917 individual mortality records in Virginia with coal-mining county residency, county-level socioeconomic status, health access, behavioral risk factors, and coal production. The development of a two-level hierarchical model allowed the coal-county effect to vary by county-level characteristics. Wald tests detected sets of significant factors explaining the variation of impacts across counties. Furthermore, to illustrate how the model estimations help explain health disparities, two coal-mining county case studies were presented. RESULTS: The main result revealed that coal-mining county residency increased the probability of dying from NMRD. The coal-county effect was accentuated by surface coal mining, high smoking rates, decreasing health insurance coverage, and a shortage of doctors. In Virginia coal-mining regions, the average coal-county effect increased by 147% (p-value< 0.01) when one doctor per 1000 left, and the effect increased by 68% (p-value< 0.01) with a 1% reduction of health insurance rates, holding other factors fixed. CONCLUSIONS: This study showed a high mortality risk of NMRD associated with residents living in Virginia coal-mining counties. Our results also revealed the critical role of health access in reducing health disparities related to coal exposure. |
---|