Cargando…
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
Deep neural networks have been increasingly used in various chemical fields. In the nature of a data-driven approach, their performance strongly depends on data used in training. Therefore, models developed in data-deficient situations can cause highly uncertain predictions, leading to vulnerable de...
Autores principales: | Ryu, Seongok, Kwon, Yongchan, Kim, Woo Youn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839511/ https://www.ncbi.nlm.nih.gov/pubmed/31803423 http://dx.doi.org/10.1039/c9sc01992h |
Ejemplares similares
-
Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
por: Zhang, Yao, et al.
Publicado: (2019) -
Uncertainty quantification for predictions of atomistic neural networks
por: Vazquez-Salazar, Luis Itza, et al.
Publicado: (2022) -
An introduction to Bayesian neural networks and uncertainty quantification in neural networks
por: Talpini, Jacopo
Publicado: (2023) -
Efficient prediction of reaction paths through molecular graph and reaction network analysis
por: Kim, Yeonjoon, et al.
Publicado: (2017) -
Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks
Publicado: (2020)