Cargando…

Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram

Uterine contraction (UC) activity is commonly used to monitor the approach of labour and delivery. Electrohysterograms (EHGs) have recently been used to monitor UC and distinguish between efficient and inefficient contractions. In this study, we aimed to identify UC in EHG signals using a convolutio...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Dongmei, Peng, Jin, Wang, Ying, Liu, Juntao, Zhou, Xiya, Zheng, Dingchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839746/
https://www.ncbi.nlm.nih.gov/pubmed/31445226
http://dx.doi.org/10.1016/j.compbiomed.2019.103394
Descripción
Sumario:Uterine contraction (UC) activity is commonly used to monitor the approach of labour and delivery. Electrohysterograms (EHGs) have recently been used to monitor UC and distinguish between efficient and inefficient contractions. In this study, we aimed to identify UC in EHG signals using a convolutional neural network (CNN). An open-access database (Icelandic 16-electrode EHG database from 45 pregnant women with 122 recordings, DB1) was used to develop a CNN model, and 14000 segments with a length of 45 s (7000 from UCs and 7000 from non-UCs, which were determined with reference to the simultaneously recorded tocography signals) were manually extracted from the 122 EHG recordings. Five-fold cross-validation was applied to evaluate the ability of the CNN to identify UC based on its sensitivity (SE), specificity (SP), accuracy (ACC), and area under the receiver operating characteristic curve (AUC). The CNN model developed using DB1 was then applied to an independent clinical database (DB2) to further test its generalisation for recognizing UCs. The EHG signals in DB2 were recorded from 20 pregnant women using our multi-channel system, and 308 segments (154 from UCs and 154 from non-UCs) were extracted. The CNN model from five-fold cross-validation achieved average SE, SP, ACC, and AUC of 0.87, 0.98, 0.93, and 0.92 for DB1, and 0.88, 0.97, 0.93, and 0.87 for DB2, respectively. In summary, we demonstrated that CNN could effectively identify UCs using EHG signals and could be used as a tool for monitoring maternal and foetal health.