Cargando…
Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram
Uterine contraction (UC) activity is commonly used to monitor the approach of labour and delivery. Electrohysterograms (EHGs) have recently been used to monitor UC and distinguish between efficient and inefficient contractions. In this study, we aimed to identify UC in EHG signals using a convolutio...
Autores principales: | Hao, Dongmei, Peng, Jin, Wang, Ying, Liu, Juntao, Zhou, Xiya, Zheng, Dingchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839746/ https://www.ncbi.nlm.nih.gov/pubmed/31445226 http://dx.doi.org/10.1016/j.compbiomed.2019.103394 |
Ejemplares similares
-
Preliminary Study on the Efficient Electrohysterogram Segments for Recognizing Uterine Contractions with Convolutional Neural Networks
por: Peng, Jin, et al.
Publicado: (2019) -
Automatic recognition of uterine contractions with electrohysterogram signals based on the zero-crossing rate
por: Song, Xiaoxiao, et al.
Publicado: (2021) -
Development of Electrohysterogram Recording System for Monitoring Uterine Contraction
por: Hao, Dongmei, et al.
Publicado: (2019) -
Recognition of uterine contractions with electrohysterogram and exploring the best electrode combination
por: Du, Mengqing, et al.
Publicado: (2022) -
Application of decision tree in determining the importance of surface electrohysterography signal characteristics for recognizing uterine contractions
por: Hao, Dongmei, et al.
Publicado: (2019)