Cargando…
Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials
In the process of finding high-performance materials for organic photovoltaics (OPVs), it is meaningful if one can establish the relationship between chemical structures and photovoltaic properties even before synthesizing them. Here, we first establish a database containing over 1700 donor material...
Autores principales: | Sun, Wenbo, Zheng, Yujie, Yang, Ke, Zhang, Qi, Shah, Akeel A., Wu, Zhou, Sun, Yuyang, Feng, Liang, Chen, Dongyang, Xiao, Zeyun, Lu, Shirong, Li, Yong, Sun, Kuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839938/ https://www.ncbi.nlm.nih.gov/pubmed/31723607 http://dx.doi.org/10.1126/sciadv.aay4275 |
Ejemplares similares
-
A molecular nematic liquid crystalline material for high-performance organic photovoltaics
por: Sun, Kuan, et al.
Publicado: (2015) -
Printable high-efficiency organic ionic photovoltaic materials discovered by high-throughput first-principle calculations
por: Huang, Peihao, et al.
Publicado: (2022) -
Acetylene-Based Materials in Organic Photovoltaics
por: Silvestri, Fabio, et al.
Publicado: (2010) -
Self-Assembled Organic Materials for Photovoltaic Application
por: Ghosh, Tanwistha, et al.
Publicado: (2017) -
15.3% Efficiency All‐Small‐Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy
por: Hu, Dingqin, et al.
Publicado: (2021)