Cargando…

CELL NON-AUTONOMOUS SEROTONIN SIGNALING MEDIATES STRESS RESISTANCE AND LONGEVITY

The ability of organisms to perceive and respond to their environment is crucial to their long-term survival. Recent studies in model organisms identify signaling pathways that perceive environmental stress and cell non-autonomously modify systemic physiology. These pathways often originate in the n...

Descripción completa

Detalles Bibliográficos
Autores principales: Leiser, Scott, Miller, Hillary, Huang, Shijiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841428/
http://dx.doi.org/10.1093/geroni/igz038.2676
Descripción
Sumario:The ability of organisms to perceive and respond to their environment is crucial to their long-term survival. Recent studies in model organisms identify signaling pathways that perceive environmental stress and cell non-autonomously modify systemic physiology. These pathways often originate in the neurons, where key cells monitor the external environment for changes including food availability, air-quality, and the presence of dangerous toxins. Our previous work identified a key role for serotonin signaling in the induction of flavin-containing monooxygenase-2 (fmo-2) downstream of hypoxic signaling. fmo-2 expression is necessary and sufficient to promote stress resistance and longevity downstream of multiple genetic pathways, making it a useful tool for identifying key components of these pathways. Our current data defines environments, pathways, and signaling molecules that induce fmo-2 and subsequently increase lifespan. Our resulting data define key roles for serotonin signaling and fmo-2 that rely upon the perception of oxygen and food.