Cargando…
CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
Accurate gene prediction in metagenomics fragments is a computationally challenging task due to the short-read length, incomplete, and fragmented nature of the data. Most gene-prediction programs are based on extracting a large number of features and then applying statistical approaches or supervise...
Autores principales: | Al-Ajlan, Amani, El Allali, Achraf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841655/ https://www.ncbi.nlm.nih.gov/pubmed/30588558 http://dx.doi.org/10.1007/s12539-018-0313-4 |
Ejemplares similares
-
Feature selection for gene prediction in metagenomic fragments
por: Al-Ajlan, Amani, et al.
Publicado: (2018) -
MGC: a metagenomic gene caller
por: El Allali, Achraf, et al.
Publicado: (2013) -
Association of Genetic Polymorphisms in the Matrix Gla Protein (MGP) Gene with Coronary Artery Disease and Serum MGP Levels
por: Karsli-Ceppioglu, S, et al.
Publicado: (2019) -
Phylogenetic convolutional neural networks in metagenomics
por: Fioravanti, Diego, et al.
Publicado: (2018) -
Polymorphisms in MGP gene and their association with lead toxicity
por: Shaik, Abjal Pasha, et al.
Publicado: (2009)