Cargando…
Sign-Consistency Based Variable Importance for Machine Learning in Brain Imaging
An important problem that hinders the use of supervised classification algorithms for brain imaging is that the number of variables per single subject far exceeds the number of training subjects available. Deriving multivariate measures of variable importance becomes a challenge in such scenarios. T...
Autores principales: | Gómez-Verdejo, Vanessa, Parrado-Hernández, Emilio, Tohka, Jussi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841656/ https://www.ncbi.nlm.nih.gov/pubmed/30919255 http://dx.doi.org/10.1007/s12021-019-9415-3 |
Ejemplares similares
-
Imaging brain change across different time scales
por: Tohka, Jussi, et al.
Publicado: (2012) -
Simulation and Validation in Brain Image Analysis
por: Tohka, Jussi, et al.
Publicado: (2016) -
Transfer Learning in Magnetic Resonance Brain Imaging: A Systematic Review
por: Valverde, Juan Miguel, et al.
Publicado: (2021) -
Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease
por: Moradi, Elaheh, et al.
Publicado: (2016) -
Histopathological modeling of status epilepticus-induced brain damage based on in vivo diffusion tensor imaging in rats
por: San Martín Molina, Isabel, et al.
Publicado: (2022)