Cargando…

The Replication-Transmission Relativity Theory for Multiscale Modelling of Infectious Disease Systems

It is our contention that for multiscale modelling of infectious disease systems to evolve and expand in scope, it needs to be founded on a theory. Such a theory would improve our ability to describe infectious disease systems in terms of their scales and levels of organization, and their inter-rela...

Descripción completa

Detalles Bibliográficos
Autor principal: Garira, Winston
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841738/
https://www.ncbi.nlm.nih.gov/pubmed/31705140
http://dx.doi.org/10.1038/s41598-019-52820-3
Descripción
Sumario:It is our contention that for multiscale modelling of infectious disease systems to evolve and expand in scope, it needs to be founded on a theory. Such a theory would improve our ability to describe infectious disease systems in terms of their scales and levels of organization, and their inter-relationships. In this article we present a relativistic theory for multiscale modelling of infectious disease systems, that can be considered as an extension of the relativity principle in physics, called the replication-transmission relativity theory. This replication-transmission relativity theory states that at any level of organization of an infectious disease system there is no privileged/absolute scale which would determine, disease dynamics, only interactions between the microscale and macroscale. Such a relativistic theory provides a scientific basis for a systems level description of infectious disease systems using multiscale modelling methods. The central idea of this relativistic theory is that at every level of organization of an infectious disease system, the reciprocal influence between the microscale and the macroscale establishes a pathogen replication-transmission multiscale cycle. We distinguish two kinds of reciprocal influence between the microscale and the macroscale based on systematic differences in their conditions of relevancy. Evidence for the validity of the replication-transmission relativity theory is presented using a multiscale model of hookworm infection that is developed at host level when the relationship between the microscale and the macroscale is described by one of the forms of reciprocal influence.