Cargando…
Experimentally attacking quantum money schemes based on quantum retrieval games
The concept of quantum money (QM) was proposed by Wiesner in the 1970s. Its main advantage is that every attempt to copy QM unavoidably leads to imperfect counterfeits. In the Wiesner’s protocol, quantum banknotes need to be delivered to the issuing bank for verification. Thus, QM requires quantum c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841968/ https://www.ncbi.nlm.nih.gov/pubmed/31704951 http://dx.doi.org/10.1038/s41598-019-51953-9 |
Sumario: | The concept of quantum money (QM) was proposed by Wiesner in the 1970s. Its main advantage is that every attempt to copy QM unavoidably leads to imperfect counterfeits. In the Wiesner’s protocol, quantum banknotes need to be delivered to the issuing bank for verification. Thus, QM requires quantum communication which range is limited by noise and losses. Recently, Bozzio et al. (2018) have demonstrated experimentally how to replace challenging quantum verification with a classical channel and a quantum retrieval game (QRG). This brings QM significantly closer to practical realisation, but still thorough analysis of the revised scheme QM is required before it can be considered secure. We address this problem by presenting a proof-of-concept attack on QRG-based QM schemes, where we show that even imperfect quantum cloning can, under some circumstances, provide enough information to break a QRG-based QM scheme. |
---|