Cargando…
Interpreting patient-Specific risk prediction using contextual decomposition of BiLSTMs: application to children with asthma
BACKGROUND: Predictive modeling with longitudinal electronic health record (EHR) data offers great promise for accelerating personalized medicine and better informs clinical decision-making. Recently, deep learning models have achieved state-of-the-art performance for many healthcare prediction task...
Autores principales: | AlSaad, Rawan, Malluhi, Qutaibah, Janahi, Ibrahim, Boughorbel, Sabri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842261/ https://www.ncbi.nlm.nih.gov/pubmed/31703676 http://dx.doi.org/10.1186/s12911-019-0951-4 |
Ejemplares similares
-
PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks
por: AlSaad, Rawan, et al.
Publicado: (2022) -
Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition
por: Li, Wenlin, et al.
Publicado: (2023) -
Combined Prediction Model of Gas Concentration Based on Indicators Dynamic Optimization and Bi-LSTMs
por: Peng, Yujie, et al.
Publicado: (2023) -
TA-BiLSTM: An Interpretable Topic-Aware Model for Misleading Information Detection in Mobile Social Networks
por: Chang, Shuyu, et al.
Publicado: (2021) -
Child-Sum EATree-LSTMs: enhanced attentive Child-Sum Tree-LSTMs for biomedical event extraction
por: Wang, Lei, et al.
Publicado: (2023)