Cargando…

Long Noncoding RNA TP73-AS1 Targets MicroRNA-329-3p to Regulate Expression of the SMAD2 Gene in Human Cervical Cancer Tissue and Cell Lines

BACKGROUND: Worldwide, mortality from cervical cancer in women remains high. This study aimed to investigate the expression of long noncoding RNA (lncRNA) TP73-AS1, microRNA-329-3p (miRNA-329-3p), and the SMAD2 gene and their regulatory relationships in human cervical cancer tissue and cervical canc...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Mei Mei, Rao, Qun Xian, Huang, Miao Ling, Wang, Li Juan, Lin, Shao Dan, Chen, Qing, Liu, Chang Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842270/
https://www.ncbi.nlm.nih.gov/pubmed/31663517
http://dx.doi.org/10.12659/MSM.916292
Descripción
Sumario:BACKGROUND: Worldwide, mortality from cervical cancer in women remains high. This study aimed to investigate the expression of long noncoding RNA (lncRNA) TP73-AS1, microRNA-329-3p (miRNA-329-3p), and the SMAD2 gene and their regulatory relationships in human cervical cancer tissue and cervical cancer cell lines. MATERIAL/METHODS: Cervical cancer tissue samples (n=30) and normal control cervical tissues were studied. Cell proliferation and migration were investigated in HeLa and SiHa human cervical cancer cells using the MTT assay, crystal violet staining, wound healing assay, and the transwell assay. Expression of lncRNA TP73-AS1 and the SMAD2 gene were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Enrichment of miR-329-3p was measured using the RNA immunoprecipitation assay (RIPA). Targeting relationships between TP73-AS1, miR-329-3p, and SMAD2 were identified using the dual-luciferase reporter assay. A subcutaneous xenograft model was established, tumor size was measured, and SMAD2 expression was detected using immunohistochemistry. RESULTS: LncRNA TP73-AS1 was overexpressed in cervical cancer tissues and cells and was associated with reduced expression of miR-329-3p. Down-regulation of lncRNA TP73-AS1 inhibited cell proliferation, migration and invasion and increased miR-329-3p expression. Expression of SMAD2 down-regulated miR-329-3p and was associated with increased expression of TP73-AS1. LncRNA TP73-AS1 knockdown resulted in miR-329-3p silencing. In tumor xenografts, expression of TP73-AS1 reduced the tumor volume and down-regulated the expression levels of the SMAD2 gene. CONCLUSIONS: LncRNA TP73-AS1 promoted proliferation of cervical cancer cell lines by targeting miR-329-3p to regulate the expression of the SMAD2 gene. A regulatory network was formed between lncRNA TP73-AS1, miR-329-3p, and SMAD2.