Cargando…
Estrogen Receptor Beta Inhibits The Proliferation, Migration, And Angiogenesis Of Gastric Cancer Cells Through Inhibiting Nuclear Factor-Kappa B Signaling
PURPOSE: This study aimed to investigate the regulatory roles of estrogen receptor beta (ERβ) on gastric cancer (GC) cells, and reveal the potential mechanisms relating to nuclear factor-kappa B (NF-κB) signaling. METHODS: GC cell lines SGC7901 and MKN45 were transfected with pEGFP-C1-ERβ to overexp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842292/ https://www.ncbi.nlm.nih.gov/pubmed/31807000 http://dx.doi.org/10.2147/OTT.S214529 |
Sumario: | PURPOSE: This study aimed to investigate the regulatory roles of estrogen receptor beta (ERβ) on gastric cancer (GC) cells, and reveal the potential mechanisms relating to nuclear factor-kappa B (NF-κB) signaling. METHODS: GC cell lines SGC7901 and MKN45 were transfected with pEGFP-C1-ERβ to overexpress ERβ, and treated with PMA (a NF-κB activator) to activate NF-κB signaling. The cell proliferation and migration, as well as the formation of vessel-like structures in human venous endothelial cells (HUVECs) were detected. The expression of ERβ, NF-κB p65, p-NF-κB p65, Ki67 (a proliferation marker), vascular endothelial growth factor A (VEGF-A) and matrix metalloproteinase 2 (MMP-2), the DNA binding activity of NF-κB p65, the content of VEGF-A, and the activity of MMP-2 were detected in SGC7901 and MKN45 cells. RESULTS: The transfection of pEGFP-C1-ERβ significantly increased the expression of ERβ in SGC7901 and MKN45 cells (P < 0.05). Overexpression of ERβ in SGC7901 and MKN45 cells significantly decreased the cell activity, cell number in G2/M phase, cell migration, the expression of Ki67, VEGF-A and MMP-2, VEGF-A content, MMP-2 activity, as well as the number of vessel-like structures formed by HUVECs (P < 0.05). Overexpression of ERβ also significantly decreased the DNA binding activity and the expression of p-NF-κB p65 in SGC7901 and MKN45 cells (P < 0.05). The anti-tumor effect of ERβ overexpression on GC cells was reversed by the intervention of PMA (P < 0.05). CONCLUSION: Overexpression of ERβ inhibited the proliferation, migration, and angiogenesis of GC cells through inhibiting NF-κB signaling. |
---|