Cargando…

Computationally guided personalized targeted ablation of persistent atrial fibrillation

Atrial fibrillation (AF) — the most common arrhythmia — significantly increases the risk of stroke and heart failure. Although catheter ablation can restore normal heart rhythms, patients with persistent AF who develop atrial fibrosis often undergo multiple failed ablations and thus increased proced...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyle, Patrick M., Zghaib, Tarek, Zahid, Sohail, Ali, Rheeda L., Deng, Dongdong, Franceschi, William H., Hakim, Joe B., Murphy, Michael J., Prakosa, Adityo, Zimmerman, Stefan L., Ashikaga, Hiroshi, Marine, Joseph E., Kolandaivelu, Aravindan, Nazarian, Saman, Spragg, David D., Calkins, Hugh, Trayanova, Natalia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842421/
https://www.ncbi.nlm.nih.gov/pubmed/31427780
http://dx.doi.org/10.1038/s41551-019-0437-9
_version_ 1783468040713666560
author Boyle, Patrick M.
Zghaib, Tarek
Zahid, Sohail
Ali, Rheeda L.
Deng, Dongdong
Franceschi, William H.
Hakim, Joe B.
Murphy, Michael J.
Prakosa, Adityo
Zimmerman, Stefan L.
Ashikaga, Hiroshi
Marine, Joseph E.
Kolandaivelu, Aravindan
Nazarian, Saman
Spragg, David D.
Calkins, Hugh
Trayanova, Natalia A.
author_facet Boyle, Patrick M.
Zghaib, Tarek
Zahid, Sohail
Ali, Rheeda L.
Deng, Dongdong
Franceschi, William H.
Hakim, Joe B.
Murphy, Michael J.
Prakosa, Adityo
Zimmerman, Stefan L.
Ashikaga, Hiroshi
Marine, Joseph E.
Kolandaivelu, Aravindan
Nazarian, Saman
Spragg, David D.
Calkins, Hugh
Trayanova, Natalia A.
author_sort Boyle, Patrick M.
collection PubMed
description Atrial fibrillation (AF) — the most common arrhythmia — significantly increases the risk of stroke and heart failure. Although catheter ablation can restore normal heart rhythms, patients with persistent AF who develop atrial fibrosis often undergo multiple failed ablations and thus increased procedural risks. Here, we present personalized computational modelling for the reliable predetermination of ablation targets, which are then used to guide the ablation procedure in patients with persistent AF and atrial fibrosis. We first show that a computational model of the atria of patients identifies fibrotic tissue that if ablated will not sustain AF. We then integrated the target-ablation sites in a clinical-mapping system, and tested its feasibility in 10 patients with persistent AF. The computational prediction of ablation targets avoids lengthy electrical mapping and could improve the accuracy and efficacy of targeted AF ablation in patients whilst eliminating the need for repeat procedures.
format Online
Article
Text
id pubmed-6842421
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-68424212020-02-19 Computationally guided personalized targeted ablation of persistent atrial fibrillation Boyle, Patrick M. Zghaib, Tarek Zahid, Sohail Ali, Rheeda L. Deng, Dongdong Franceschi, William H. Hakim, Joe B. Murphy, Michael J. Prakosa, Adityo Zimmerman, Stefan L. Ashikaga, Hiroshi Marine, Joseph E. Kolandaivelu, Aravindan Nazarian, Saman Spragg, David D. Calkins, Hugh Trayanova, Natalia A. Nat Biomed Eng Article Atrial fibrillation (AF) — the most common arrhythmia — significantly increases the risk of stroke and heart failure. Although catheter ablation can restore normal heart rhythms, patients with persistent AF who develop atrial fibrosis often undergo multiple failed ablations and thus increased procedural risks. Here, we present personalized computational modelling for the reliable predetermination of ablation targets, which are then used to guide the ablation procedure in patients with persistent AF and atrial fibrosis. We first show that a computational model of the atria of patients identifies fibrotic tissue that if ablated will not sustain AF. We then integrated the target-ablation sites in a clinical-mapping system, and tested its feasibility in 10 patients with persistent AF. The computational prediction of ablation targets avoids lengthy electrical mapping and could improve the accuracy and efficacy of targeted AF ablation in patients whilst eliminating the need for repeat procedures. 2019-08-19 2019-11 /pmc/articles/PMC6842421/ /pubmed/31427780 http://dx.doi.org/10.1038/s41551-019-0437-9 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Boyle, Patrick M.
Zghaib, Tarek
Zahid, Sohail
Ali, Rheeda L.
Deng, Dongdong
Franceschi, William H.
Hakim, Joe B.
Murphy, Michael J.
Prakosa, Adityo
Zimmerman, Stefan L.
Ashikaga, Hiroshi
Marine, Joseph E.
Kolandaivelu, Aravindan
Nazarian, Saman
Spragg, David D.
Calkins, Hugh
Trayanova, Natalia A.
Computationally guided personalized targeted ablation of persistent atrial fibrillation
title Computationally guided personalized targeted ablation of persistent atrial fibrillation
title_full Computationally guided personalized targeted ablation of persistent atrial fibrillation
title_fullStr Computationally guided personalized targeted ablation of persistent atrial fibrillation
title_full_unstemmed Computationally guided personalized targeted ablation of persistent atrial fibrillation
title_short Computationally guided personalized targeted ablation of persistent atrial fibrillation
title_sort computationally guided personalized targeted ablation of persistent atrial fibrillation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842421/
https://www.ncbi.nlm.nih.gov/pubmed/31427780
http://dx.doi.org/10.1038/s41551-019-0437-9
work_keys_str_mv AT boylepatrickm computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT zghaibtarek computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT zahidsohail computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT alirheedal computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT dengdongdong computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT franceschiwilliamh computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT hakimjoeb computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT murphymichaelj computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT prakosaadityo computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT zimmermanstefanl computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT ashikagahiroshi computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT marinejosephe computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT kolandaiveluaravindan computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT nazariansaman computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT spraggdavidd computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT calkinshugh computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation
AT trayanovanataliaa computationallyguidedpersonalizedtargetedablationofpersistentatrialfibrillation