Cargando…

Simultaneous evaluation of diagnostic marker utility for enzootic bovine leukosis

BACKGROUND: Enzootic bovine leukosis (EBL) is a disease of cattle caused by bovine leukemia virus (BLV). More than 60% of BLV-infected cattle remain subclinical and are thus referred to as aleukemic (AL) cattle. Approximately 30% of infected cattle show a relatively stable increase in the number of...

Descripción completa

Detalles Bibliográficos
Autores principales: Konishi, Misako, Kobayashi, Sota, Tokunaga, Taeko, Chiba, Yuzumi, Tsutsui, Toshiyuki, Arai, Shozo, Kameyama, Ken-ichiro, Yamamoto, Takehisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842470/
https://www.ncbi.nlm.nih.gov/pubmed/31706301
http://dx.doi.org/10.1186/s12917-019-2158-4
Descripción
Sumario:BACKGROUND: Enzootic bovine leukosis (EBL) is a disease of cattle caused by bovine leukemia virus (BLV). More than 60% of BLV-infected cattle remain subclinical and are thus referred to as aleukemic (AL) cattle. Approximately 30% of infected cattle show a relatively stable increase in the number of B lymphocytes; these cattle are termed persistent lymphocytosis (PL) cattle. A small percentage of infected cattle develop BLV-induced B cell lymphoma (EBL) and are called EBL cattle. Due to the increase in the number of BLV-infected cattle, the number of EBL cattle has featured a corresponding increase over recent years in Japan. Several diagnostic criteria for EBL (e.g., enlarged superficial lymph nodes, protrusion of the eye, increased peripheral blood lymphocyte, etc.) are used for on-farm diagnosis and antemortem tests at slaughterhouses. Since the slaughter of EBL cattle for human consumption is not allowed, on-farm detection of EBL cattle is important for reducing the economic loss incurred by farms. Therefore, establishing new diagnostic markers to improve the efficiency and accuracy of the antemortem detection of EBL cattle is a critical, unmet need. To simultaneously evaluate the utility of candidate markers, this study measured the values of each marker using the blood samples of 687 cattle with various clinical statuses of BLV infection (EBL, PL, AL and non-infected cattle). RESULTS: Sensitivity (Se) and specificity (Sp) were highest for the serum thymidine kinase (TK) followed by the serum lactate dehydrogenase (LDH) isozyme 2. The number of peripheral blood lymphocytes and proviral load in peripheral blood had the lowest Se and Sp. The values of all markers other than TK were influenced by the sex of the tested cattle. CONCLUSIONS: Although tLDH and its isozymes (LDHs) may be influenced by the sex of the tested cattle, the high accuracy of TK and LDH2 as well as accessibility and simplicity of the protocol used to measure these enzymes recommend the utility of TK and LDHs for EBL cattle detection. Using these markers for screening followed by the application of existing diagnostic criteria may improve the efficiency and accuracy of EBL cattle detection on farms, thereby contributing to the reduction of economic losses in farms.