Cargando…

Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia

BACKGROUND: Two previous studies on interspecific body size variation of anurans found that the key drivers of variation are the species’ lifestyles and the environments that they live in. To examine whether those findings apply at the intraspecific level, we conducted a study of the Asian common to...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Cheng, Gao, Shuai, Krzton, Ali, Zhang, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842474/
https://www.ncbi.nlm.nih.gov/pubmed/31706264
http://dx.doi.org/10.1186/s12862-019-1531-z
_version_ 1783468047268315136
author Guo, Cheng
Gao, Shuai
Krzton, Ali
Zhang, Long
author_facet Guo, Cheng
Gao, Shuai
Krzton, Ali
Zhang, Long
author_sort Guo, Cheng
collection PubMed
description BACKGROUND: Two previous studies on interspecific body size variation of anurans found that the key drivers of variation are the species’ lifestyles and the environments that they live in. To examine whether those findings apply at the intraspecific level, we conducted a study of the Asian common toad (Duttaphrynus melanostictus), a terrestrial anuran distributed in tropical regions. The body size of toads from 15 locations, covering the majority of their geographic range, and local environmental data were summarized from published literature. We used a model selection process based on an information-theoretic approach to examine the relationship between toad body size and those environmental parameters. RESULTS: We found a positive correlation between the body size of the Asian common toad and the water deficit gradient, but no linkage between body size and temperature-related parameters. Furthermore, there was a positive correlation between the seasonality of precipitation and body size of females from different sampled populations. CONCLUSIONS: As a terrestrial anuran, the Asian common toad should experience greater pressure from environmental fluctuations than aquatic species. It is mainly distributed in tropical regions where temperatures are generally warm and stable, but water availability fluctuates. Therefore, while thermal gradients are not strong enough to generate selection pressure on body size, the moisture gradient is strong enough to select for larger size in both males and females in dryer regions. Larger body size supports more efficient water conservation, a pattern in accordance with the prediction that lifestyles of different species and their local habitats determine the relationship between body size and environment. In addition, larger females occur in regions with greater seasonality in precipitation, which may happen because larger females can afford greater reproductive output in a limited reproductive season.
format Online
Article
Text
id pubmed-6842474
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68424742019-11-14 Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia Guo, Cheng Gao, Shuai Krzton, Ali Zhang, Long BMC Evol Biol Research Article BACKGROUND: Two previous studies on interspecific body size variation of anurans found that the key drivers of variation are the species’ lifestyles and the environments that they live in. To examine whether those findings apply at the intraspecific level, we conducted a study of the Asian common toad (Duttaphrynus melanostictus), a terrestrial anuran distributed in tropical regions. The body size of toads from 15 locations, covering the majority of their geographic range, and local environmental data were summarized from published literature. We used a model selection process based on an information-theoretic approach to examine the relationship between toad body size and those environmental parameters. RESULTS: We found a positive correlation between the body size of the Asian common toad and the water deficit gradient, but no linkage between body size and temperature-related parameters. Furthermore, there was a positive correlation between the seasonality of precipitation and body size of females from different sampled populations. CONCLUSIONS: As a terrestrial anuran, the Asian common toad should experience greater pressure from environmental fluctuations than aquatic species. It is mainly distributed in tropical regions where temperatures are generally warm and stable, but water availability fluctuates. Therefore, while thermal gradients are not strong enough to generate selection pressure on body size, the moisture gradient is strong enough to select for larger size in both males and females in dryer regions. Larger body size supports more efficient water conservation, a pattern in accordance with the prediction that lifestyles of different species and their local habitats determine the relationship between body size and environment. In addition, larger females occur in regions with greater seasonality in precipitation, which may happen because larger females can afford greater reproductive output in a limited reproductive season. BioMed Central 2019-11-09 /pmc/articles/PMC6842474/ /pubmed/31706264 http://dx.doi.org/10.1186/s12862-019-1531-z Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Guo, Cheng
Gao, Shuai
Krzton, Ali
Zhang, Long
Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia
title Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia
title_full Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia
title_fullStr Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia
title_full_unstemmed Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia
title_short Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia
title_sort geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on asian common toad from southern asia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842474/
https://www.ncbi.nlm.nih.gov/pubmed/31706264
http://dx.doi.org/10.1186/s12862-019-1531-z
work_keys_str_mv AT guocheng geographicbodysizevariationofatropicalanuraneffectsofwaterdeficitandprecipitationseasonalityonasiancommontoadfromsouthernasia
AT gaoshuai geographicbodysizevariationofatropicalanuraneffectsofwaterdeficitandprecipitationseasonalityonasiancommontoadfromsouthernasia
AT krztonali geographicbodysizevariationofatropicalanuraneffectsofwaterdeficitandprecipitationseasonalityonasiancommontoadfromsouthernasia
AT zhanglong geographicbodysizevariationofatropicalanuraneffectsofwaterdeficitandprecipitationseasonalityonasiancommontoadfromsouthernasia