Cargando…
Data-driven discovery of coordinates and governing equations
The discovery of governing equations from scientific data has the potential to transform data-rich fields that lack well-characterized quantitative descriptions. Advances in sparse regression are currently enabling the tractable identification of both the structure and parameters of a nonlinear dyna...
Autores principales: | Champion, Kathleen, Lusch, Bethany, Kutz, J. Nathan, Brunton, Steven L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842598/ https://www.ncbi.nlm.nih.gov/pubmed/31636218 http://dx.doi.org/10.1073/pnas.1906995116 |
Ejemplares similares
-
Data-driven discovery of partial differential equations
por: Rudy, Samuel H., et al.
Publicado: (2017) -
Deep learning for universal linear embeddings of nonlinear dynamics
por: Lusch, Bethany, et al.
Publicado: (2018) -
Data-driven science and engineering: machine learning, dynamical systems, and control
por: Brunton, Steven L, et al.
Publicado: (2019) -
Learning dominant physical processes with data-driven balance models
por: Callaham, Jared L., et al.
Publicado: (2021) -
Hierarchical deep learning of multiscale differential equation time-steppers
por: Liu, Yuying, et al.
Publicado: (2022)