Cargando…
Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact
Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842625/ https://www.ncbi.nlm.nih.gov/pubmed/31636204 http://dx.doi.org/10.1073/pnas.1905989116 |
_version_ | 1783468073447063552 |
---|---|
author | Henehan, Michael J. Ridgwell, Andy Thomas, Ellen Zhang, Shuang Alegret, Laia Schmidt, Daniela N. Rae, James W. B. Witts, James D. Landman, Neil H. Greene, Sarah E. Huber, Brian T. Super, James R. Planavsky, Noah J. Hull, Pincelli M. |
author_facet | Henehan, Michael J. Ridgwell, Andy Thomas, Ellen Zhang, Shuang Alegret, Laia Schmidt, Daniela N. Rae, James W. B. Witts, James D. Landman, Neil H. Greene, Sarah E. Huber, Brian T. Super, James R. Planavsky, Noah J. Hull, Pincelli M. |
author_sort | Henehan, Michael J. |
collection | PubMed |
description | Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record. |
format | Online Article Text |
id | pubmed-6842625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-68426252019-11-15 Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact Henehan, Michael J. Ridgwell, Andy Thomas, Ellen Zhang, Shuang Alegret, Laia Schmidt, Daniela N. Rae, James W. B. Witts, James D. Landman, Neil H. Greene, Sarah E. Huber, Brian T. Super, James R. Planavsky, Noah J. Hull, Pincelli M. Proc Natl Acad Sci U S A Physical Sciences Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record. National Academy of Sciences 2019-11-05 2019-10-21 /pmc/articles/PMC6842625/ /pubmed/31636204 http://dx.doi.org/10.1073/pnas.1905989116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Henehan, Michael J. Ridgwell, Andy Thomas, Ellen Zhang, Shuang Alegret, Laia Schmidt, Daniela N. Rae, James W. B. Witts, James D. Landman, Neil H. Greene, Sarah E. Huber, Brian T. Super, James R. Planavsky, Noah J. Hull, Pincelli M. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |
title | Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |
title_full | Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |
title_fullStr | Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |
title_full_unstemmed | Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |
title_short | Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |
title_sort | rapid ocean acidification and protracted earth system recovery followed the end-cretaceous chicxulub impact |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842625/ https://www.ncbi.nlm.nih.gov/pubmed/31636204 http://dx.doi.org/10.1073/pnas.1905989116 |
work_keys_str_mv | AT henehanmichaelj rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT ridgwellandy rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT thomasellen rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT zhangshuang rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT alegretlaia rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT schmidtdanielan rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT raejameswb rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT wittsjamesd rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT landmanneilh rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT greenesarahe rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT huberbriant rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT superjamesr rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT planavskynoahj rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact AT hullpincellim rapidoceanacidificationandprotractedearthsystemrecoveryfollowedtheendcretaceouschicxulubimpact |