Cargando…
Machine Learning For Tuning, Selection, And Ensemble Of Multiple Risk Scores For Predicting Type 2 Diabetes
BACKGROUND: This study proposes the use of machine learning algorithms to improve the accuracy of type 2 diabetes predictions using non-invasive risk score systems. METHODS: We evaluated and compared the prediction accuracies of existing non-invasive risk score systems using the data from the REACTI...
Autores principales: | Liu, Yujia, Ye, Shangyuan, Xiao, Xianchao, Sun, Chenglin, Wang, Gang, Wang, Guixia, Zhang, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842709/ https://www.ncbi.nlm.nih.gov/pubmed/31807099 http://dx.doi.org/10.2147/RMHP.S225762 |
Ejemplares similares
-
Association of diabetes mellitus with hepatitis B and hepatitis C virus infection: evidence from an epidemiological study
por: Liu, Yujia, et al.
Publicado: (2019) -
Decreased Cardiovascular Risk after Roux-en-Y Gastric Bypass Surgery in Chinese Diabetic Patients with Obesity
por: Zhao, Xue, et al.
Publicado: (2017) -
A Clinical and Neuropathological Study of Chinese Patients with Diabetic Peripheral Neuropathy
por: Li, Guangren, et al.
Publicado: (2014) -
Ensemble Learning to Improve the Prediction of Fetal Macrosomia and Large-for-Gestational Age
por: Ye, Shangyuan, et al.
Publicado: (2020) -
The Relationship between Alcohol Consumption and Incidence of Glycometabolic Abnormality in Middle-Aged and Elderly Chinese Men
por: Zhang, Siwen, et al.
Publicado: (2016)